

Submitted to the EC on 07/09/2014

COMPETITIVENESS AND INNOVATION FRAMEWORK PROGRAMME

ICT Policy Support Programme (ICT PSP)

e-CODEX

e-Justice Communication via Online Data Exchange

ICT PSP call identifier: CIP-ICT-PSP-2009-4

ICT PSP main Theme identifier: CIP ICT PSP 2010 5.2 3: E-JUSTICE SERVICES

Project full title: e-Justice Communication via Online Data Exchange

Grant agreement n°: 270968

D 4.8: Concept for Implementation of WP4
(Update of D4.2)

Deliverable Id :

D 4.8

Deliverable Name : Concept for Implementation of WP4

Status : V 2.0

Dissemination Level : PU

Due date of deliverable : 30.06.2013

Actual submission date : 07.09.2014

Work Package : WP4

Organisation name of lead partner for this deliverable : Ministry of Justice, Estonia

Author(s):

Adrian Klar

Rudi Teschner

Viljar Tina

Cyril Murie

Lesli Hommik

Partner(s) contributing : DE, EE, FR, WP1, WP4, WP5, WP7

Abstract:

As part of the e-CODEX project, this deliverable is an update of D4.2 that provides the concept for
implementation of WP4. The aim is to provide an up-to-date description of modules and building
blocks that have been realised, descriptions of detailed processes and requirements and the mapping
of the processes to the functionalities of the solution.

1

History

Version Date Changes made Modified by

0.1 08.03.2013
Aligned document to changes made as the library
has been developed.

Adrian Klar

0.5 06.06.2013
Review of document to keep it up-to-date, taking
new e-CODEX participants into account.
Title changed from “D4.2” to “D4.8”

Adrian Klar

0.8 01.07.2013 Took comments from review into account Adrian Klar

0.95 24.07.2013 Finalisation Adrian Klar

1.0 29.07.2013 Changes made to the introduction chapter Lesli Hommik

1.5 25.06.2014 Updated document Adrian Klar

1.7 16.07.2014
Comments on the updated document analysed and
changes made accordingly.

Adrian Klar

1.8 28.07.2014 History of the document corrected Lesli Hommik

1.9 26.08.2014
Comments on the updated document (final review)
analysed and changes made accordingly. Document
finalized for submission to the EC.

Adrian Klar

Lesli Hommik

2.0 07.09.2014 Final editorial amendments WP1

2

Table of Contents

HISTORY ... 1

TABLE OF CONTENTS .. 2

LIST OF FIGURES ... 5

LIST OF TABLES ... 6

LIST OF ABBREVIATIONS AND ACRONYMS .. 7

EXECUTIVE SUMMARY .. 9

1 INTRODUCTION .. 11

1.1 SCOPE AND OBJECTIVE OF DELIVERABLE ... 11

1.2 WP4 GENERAL OBJECTIVES AND VISION .. 11

1.3 METHODOLOGY OF WORK ... 11

1.4 RELATIONS TO INTERNAL E-CODEX ENVIRONMENT ... 11

1.5 RELATIONS TO EXTERNAL E-CODEX ENVIRONMENT ... 12

1.6 QUALITY MANAGEMENT .. 12

1.7 RISK MANAGEMENT.. 13

1.8 STRUCTURE OF THE DOCUMENT .. 14

2 TECHNICAL ENVIRONMENT ... 15

2.1 ARCHITECTURE ... 15

2.1.1 E-CODEX SERVICE PROVIDER .. 16

2.1.2 CONNECTOR .. 16

2.1.3 GATEWAY ... 16

2.2 KEY COMPONENTS .. 17

2.2.1 TRUST OK-TOKEN .. 17

2.2.2 ASIC-S CONTAINER .. 19

2.2.3 DIGITAL SIGNATURE SERVICES .. 20

2.2.4 SIGNATURE CERTIFICATE .. 20

3 FUNCTIONALITIES ... 21

3.1 CONNECTOR .. 21

3.1.1 GENERAL DESCRIPTION ... 21

3.1.2 CONNECTOR (OUTGOING) .. 21

3.1.3 CONNECTOR (INCOMING) .. 22

3

3.2 RECIPIENT ... 22

3.2.1 MANUAL REVALIDATION ... 22

4 PROCESSES AND TASKS ... 23

4.1 SUBMISSION OF DOCUMENTS ... 23

4.2 SIGNATURE VERIFICATION .. 28

4.2.1 PRECONDITIONS ... 28

4.2.2 PROCESS FLOW: SIGNATURE VERIFICATION .. 28

4.2.3 POST CONDITIONS .. 34

4.3 CREATE THE “TRUST OK”-TOKEN (PDF & XML) ... 34

4.3.1 PRECONDITIONS ... 34

4.3.2 DATA FLOW: CREATION OF THE “TRUST OK”-TOKEN .. 35

4.3.3 POST CONDITIONS .. 36

4.4 CREATE CONTENT ARCHIVE .. 37

4.4.1 PRECONDITIONS ... 37

4.4.2 DATA FLOW: CREATION OF A CONTENT ARCHIVE ... 38

4.4.3 PREDEFINED PROCESS: ADD FILE(S) TO ZIP ARCHIVE .. 39

4.4.4 POST CONDITIONS .. 41

4.5 CREATE AND SIGN AN ASIC-S SIGNATURE CONTAINER ... 41

4.5.1 PRECONDITIONS ... 41

4.5.2 DATA FLOW: CREATION OF ASIC-S SIGNATURE CONTAINER .. 42

4.5.3 POST CONDITIONS .. 44

4.6 CERTIFICATE VERIFICATION ... 45

4.6.1 PRECONDITION: ... 45

4.6.2 POST CONDITIONS .. 46

4.7 CREATE VALIDATION REPORT.. 47

5 DESCRIPTION OF MODULES AND BUILDING BLOCKS TO BE REALISED 48

5.1 JAVA LIBRARY FOR USAGE WITHIN THE CONNECTOR ... 48

5.1.1 REQUIREMENTS ... 48

5.1.2 PACKAGING ... 48

5.1.3 INTERFACES ... 49

5.1.4 CLASSES AND BASIC INTERFACE IMPLEMENTATIONS ... 54

5.1.5 ENUMERATIONS ... 62

5.2 SIGNATURE VERIFICATION .. 65

4

5.2.1 VERIFICATION AT SENDING SERVICE PROVIDER .. 65

5.2.2 VERIFICATION AT RECEIVING SERVICE PROVIDER .. 65

5.2.3 CROSS-BORDER VERIFICATION.. 66

5.3 SIGNATURE CREATION ON BUSINESS DOCUMENTS .. 66

5.4 SIGNATURE CREATION ON “TRUST OK”-TOKEN .. 66

5.4.1 SIGNATURE ON THE PDF VERSION ... 66

5.4.2 SIGNATURE ON THE XML VERSION .. 67

5.5 VALIDATION REPORT ... 70

5.6 “TRUST OK”-TOKEN ... 71

5.6.1 CONTENT .. 71

5.6.2 STRUCTURE ... 72

5.6.3 LINK TO THE VALIDATED DOCUMENTS ... 80

5.6.4 TRANSMISSION OF THE TOKEN .. 83

I. REFERENCES ... 84

A. APPENDIX: VALIDATION REPORT STRUCTURE ... 85

1 INTRODUCTION ... 85

1.1 USED TYPE .. 85

2 VALIDATION REPORT .. 87

2.1 TIME INFORMATION ... 87

2.2 SIGNATURE INFORMATION ... 87

5

List of Figures

Figure 1: e-CODEX Architecture .. 15

Figure 2: ASiC Container Structure .. 19

Figure 3: Submission of business documents - Sending side .. 23

Figure 4: Submission of business documents – Receiving side ... 26

Figure 5: Basic View on Signature Verification ... 28

Figure 6: “Check Signature” .. 29

Figure 7: Closer view on "Signature Integrity Analysis" ... 30

Figure 8: Closer view on "Certificate Integrity Analysis" .. 31

Figure 9: Closer view on "Certificate Authority Analysis" .. 32

Figure 10: Closer view on Certificate Status Analysis .. 33

Figure 11: Creation of a “Trust Ok”-Token .. 35

Figure 12: Creation of a Content Archive .. 38

Figure 13: Closer view on the process “Add file(s) to ZIP archive” ... 39

Figure 14: Basic Process of ASiC-S signature container creation .. 42

Figure 15: Closer view on “Valid Archive?” ... 43

Figure 16: Closer view on “Create signature container” ... 43

Figure 17: Closer view on “Create XAdES Signature” .. 44

Figure 18: Closer View on "Certificate Verification” .. 45

Figure 19: Closer View on "Create Validation Report” ... 47

Figure 20 Structure of the class "token" ... 59

Figure 21: Exemplary first page ... 72

Figure 22: Exemplary second page for a signature-based advanced electronic system 74

Figure 23: Exemplary second page for a authentication-based advanced electronic system 75

Figure 24: Exemplary first page of a national validation report.. 76

Figure 25: Example for ASiC-S structure applied to a nested container file ... 80

Figure 26: Example for a valid signature container ... 81

Figure 27: Signature container within the e-CODEX transport infrastructure 83

6

List of Tables

Table 1: Quality Checklist .. 12

Table 2: Risks ... 13

Table 3: Basic View on a XAdES Signature ... 67

Table 4: Detailed View on the Element "ds:SignedInfo" ... 68

Table 5 Description "Trust Ok"-Token page 1 ... 72

Table 6 Description "Trust Ok"-Token Assessment of a signature .. 74

Table 7 Description "Trust Ok"-Token Assessment of an authentication ... 75

Table 8: Specification of the content archive .. 81

7

List of Abbreviations and Acronyms

Acronym Explanation

CA Certification Authority

CAdES CMS Advanced Electronic Signatures, published by ETSI as TS 101 733

CMS Cryptographic Message Syntax, see “CAdES”-Description

CRL
Certificate Revocation List, see “RFC 5280”

http://www.ietf.org/rfc/rfc5280.txt

DG Directorate-General

DSS Digital Signature Standard

eBMS ebXML Messaging Services

ebXML Electronic Business using XML

e-CODEX e-Justice Communication via Online Data Exchange

eCM e-CODEX Member

EPO European Payment Order

EQM External Quality Manager

ETSI European Telecommunications Standards Institute

GW Gateway

ICT Information and communication technologies

ID Identity

LTV Long Time Validity

MS EU Member State

OCSP
Online Certificate Status Protocol, see “RFC 2560”

http://www.ietf.org/rfc/rfc2560.txt

PAdES PDF Advanced Electronic Signature, published by ETSI as TS 102 778

PDF Portable Document Format

PEPPOL
Pan-European Public Procurement Online

http://www.peppol.eu/

PKCS Public-key cryptography standards

QC Qualified Certificate

SHA Secure Hash Algorithm

http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc2560.txt
http://www.peppol.eu/

8

SP (e-CODEX) Service Provider

SSCD Secure Signature Creation Device

STORK
Secure Identity across borders linked

https://www.eID-stork.eu/

Token Device that an authorised user of computer services is given to ease authentication

TSL Trust-Service Status List, published by ETSI as TS 102 231

TSP Trusted Service Provider

VRE Validation Report Entry

WP Work Package

XAdES XML Advanced Electronic Signatures, published by ETSI as TS 101 903

XML Extensive Markup Language

https://www.eid-stork.eu/

9

Executive Summary

Following higher levels of mobility and greater European integration, the number of procedures
containing cross-border effects has increased. To meet this demand, more cooperation between the
different national judicial systems is needed.

In this context, the goal of e-CODEX is to improve cross-border access for citizens and businesses to
legal means in Europe and the interoperability between legal authorities by using instruments of the
ICT.

The ambition of e-CODEX is to create a pan-European interoperability layer by connecting already
existing national systems to allow communication and data exchange based on the development of
common technical approaches and standards.

The project strongly commits itself to adapt and / or adopt the solutions developed by other
interoperability projects like PEPPOL, SPOCS, STORK and DG Market’s Digital Signature Services Tool.

Whereas the overall scope of the project is bigger, WP4 aims to cover all e-Identity related topics:

 e-Identity management for natural and legal roles, mandates and rights as well as user
authentication and authorisation

 Verification and Implementation of e-Signatures.

As several new partners joined e-CODEX due to an extension of the project, an update of the existing
deliverables became necessary to provide the new partners with up-to-date information. For this
reason, the present document provides an extended and reworked version of the third deliverable
D4.2 as it has been written by WP4. Beside several minor changes to the e-Signature related
processes, functionalities and software modules that have been applied to the specification at the
time of development, this document received major updates within the following topics:

 Updated and more detailed view on both versions, PDF and XML, of the “Trust Ok”-Token.

 Updated descriptions of the implemented software modules as the modules have been improved
and changed at the time of development.

 The description of the link between a business document and the “Trust Ok”-Token has been
reworked. This link is necessary to provide a solution disabling the usage of a “Trust Ok”-Token
for a business document it does not refer to.

 A description of the functionality to support authentication based systems with signatures has
been added. These systems do not rely solely on the successful authentication of the user.
Instead, the authentication service signs the document and thereby approves that the person
that was authenticated and created the document was the claimant that is mentioned within the
business document.

10

Beside the detailed description of processes and building blocks this document describes significant
key decisions: the usage of DSS, ASiC and the “Trust OK”-Token.

When comparing the e-CODEX use cases to the functionalities provided by other interoperability
projects, the result was that most of the missing building blocks can be covered by DG Market’s
DSS Tool - a Java based open source software module that can be used to create, extend and validate
XAdES, PAdES and CAdES Signatures.

To overcome one of the biggest issues for WP4 that currently not all European citizens are equipped
with an electronic signature tool and that advanced electronic signatures are not yet completely
interoperable at European level, the concept of the “Trust OK“-Token is introduced providing
validation information within a single document.

To realise the “Trust OK”-Token it has been decided that an e-CODEX Service Provider delivering
trusted documents has to be characterised as an advanced electronic system (see section 2.2.1.2).
The use of an advanced electronic system within e-CODEX will thus guarantee that a trusted
document is linked to one particular user, that it is created using means the user can maintain under
his sole control and that it has not been changed.

The “Trust OK”-Token basically is a confirmation document signed by the Connector. Within the
“Circle of Trust” (see section 2.2.1.1) it is used to assure the authenticity of the delivered documents.

11

1 Introduction

1.1 Scope and Objective of Deliverable

This deliverable provides the concept for implementation of tasks assigned to WP4. The aim is to
provide descriptions of modules and building blocks realised, descriptions of detailed processes and
requirements and mapping the processes to the functionalities of the solution. This deliverable will
reflect the development of necessary modules and building blocks in WP4 for e-CODEX.

1.2 WP4 General Objectives and Vision

The overall objective of WP4 is to establish a model for the use of a European e-Identity framework
for data exchange between e-Justice applications and to deal with electronic signatures. Due to the
nature of the e-CODEX pilot use cases, WP4 concentrates on electronic signatures. Providing a
solution for handling electronic signatures is essential for a successful piloting phase as signatures are
especially crucial in the field of justice. The vision of WP4 has been supporting pilots by setting up a
solution for e-signature verification in e-CODEX.

1.3 Methodology of Work

The initial deliverable D4.2 was drafted by WP4 author team which consisted of IT-architects and
lawyers from Estonia, Germany and France. While writing this deliverable, one workshop was held to
discuss open issues and to reach agreements on important issues while other WP4 members were
consulted via e-mails. Intensive communication and good cooperation between the authors formed
the basis for unity within the work package. The updates of D4.2 which lead to D4.8 were done based
on the experience and knowledge gained from the development phase and the information received
from new partners in e-CODEX.

1.4 Relations to Internal e-CODEX Environment

This deliverable provides updated information on the concept of implementation of WP4.

12

1.5 Relations to External e-CODEX Environment

In this deliverable, the modules and building blocks have been described in detail and solutions are
specified. These specifications could and possibly will affect the piloting phase by being the main
basis for the new piloting Member States to also prepare their own signature.

1.6 Quality Management

External quality checks have been performed by the External Quality Manager. Internal quality
checks have been done by WP1 team as well as the members of WP4 and several other members of
e-CODEX.
The following table gives an overview about the quality checks performed on this deliverable.

Category Remarks Checked by

Conformance to
e-CODEX template

Firstly done by WP4-leader and also checked by WP1
before submission to EC.

WP4
WP1
EQM

Language & Spelling Remarks from EQM were taken into account and the
deliverable was re-checked by WP4 leader before
submission.

WP4
EQM

Delivered on time Delays in delivery of this deliverable due to limited
resources and priorities lying in preparations for piloting.

WP4
WP1
EC

Each technology
description contains the
correct elements

Checked by IT-architects working on the deliverable. WP4

Consistency with
description in the
planning of the project
and in other e-CODEX
deliverables

Checked by WP4 leader and WP1. WP4
WP1

Content is fit for
purpose

Checked by IT-architects working on the deliverable. WP4

Content is fit for use Checked by IT-architects working on the deliverable. WP4

Commitment within WP Checked by WP4 leader. WP4

Table 1: Quality Checklist

13

1.7 Risk Management

The following table gives an overview of the main risks of WP4:

Description Probability Impact Priority Response Owner

Partners not contributing
in WP4 which causes
delays in deliveries.

High High Very
high

Involvement of new
partners in WP4 and
enforcement and
encouragement of
contribution by WP4
leader and the
coordinator.

WP4

Problems in making the
solution work for every
piloting country

High

Medium

High Close collaboration with
piloting countries,
including piloting
countries in testing and
close collaboration with
the developer.

WP4

National solutions are not
in accordance with the
standards and regulations
and can't be integrated
into the developed
solution.

Medium Medium Medium Member States have to
modify their national
solutions to be in
accordance with given
standards and
regulations.

WP4

The solution created is not
suitable for e-CODEX.

Medium High High Experts and good
developers have been
included in the
specification and
development phase.
Piloting phase will
confirm the suitability of
the solution and when
needed, changes will be
made to the solution.

WP4

Table 2: Risks

14

1.8 Structure of the Document

The document is structured as follows:

1. Introduction
2. Technical Environment

2.1 Architecture
2.2 Key Components

3. Functionalities
3.1 Connector
3.2 Recipient

4. Processes and Tasks
4.1 Submission of Documents
4.2 Signature Verification
4.3 Create the “Trust Ok”-Token (PDF & XML)
4.4 Create a Content Archive
4.5 Create and Sign an ASiC-S Signature Container
4.6 Create Validation Report

5. Modules and Building Blocks
5.1 Java Library for Usage within the Connector
5.2 Signature Verification
5.3 Signature Creation on Business Documents
5.4 Signature Creation on “Trust Ok”-Token
5.5 Validation Report
5.6 “Trust Ok”-Token

15

2 Technical Environment

This chapter gives a general overview about technical parameters that need to be considered as
e-CODEX is intended to operate in an environment that is regulated by the European Commission
and affected by European and national law.

2.1 Architecture

As stated in the Annex 1 of the Grant Agreement, e-CODEX is an interoperability layer for electronic
exchanges in Europe in the field of Justice and should operate within the context of existing solutions
of each eCM (e-CODEX Member). It should not be a new centralised approach or duplication of any
national solution at the European level.

Within e-CODEX and in cooperation between the technical Work Packages it is agreed that the best
way to achieve the goals is to use a gateway-based architecture. The function of the gateway is to act
as an access point for each national solution to the interoperability layer developed by e-CODEX. The
gateway approach guarantees subsidiarity as it does not overrun the national applications. It
converts messages from the national format to a format supported by e-CODEX and vice versa.

Figure 1: e-CODEX Architecture

16

2.1.1 e-CODEX Service Provider

An e-CODEX Service Provider, under the responsibility of a public authority, provides services to
users (citizen, judge, lawyer, notaries) or general services (e.g. find a competent court).

An e-CODEX Service Provider can be either a National Service Provider or a European Service
Provider like the e-Justice Portal.

Two types of e-CODEX Service Providers exist:

 The first type can be used by a human being, i.e. by a claimant, a defendant, a representative
(i.e. lawyer) or a judicial authority, to create PDF / XML documents and send them or to receive
documents.

 The second type is an automated e-CODEX Service Provider. It can be used for e-payment, EPO
and small claims or to find the competent court.

The following example describes the latter case:

The e-CODEX service provider receives a business document containing information from
another eCM. With this information, the service provider responds automatically to the business
document providing the information about the competent court. As this information has no legal
value, there is no need for a “Trust-OK”-Token.

2.1.2 Connector

Under the responsibility of the respective Ministry of Justice, the DG Justice of the European
commission or any other competent national authority, the connector contains the functionalities to:

 Add a “Trust OK”-Token to a document generated by an e-CODEX Service Provider.

 Transform the XML document from the national standard to the e-CODEX standard and vice
versa.

 Retrieve the end user address (e.g. by extracting it from the business XML) for the final national
routing.

2.1.3 Gateway

Under the responsibility of the respective Ministry of Justice, the DG Justice of the European
Commission or any other competent authority, the gateway has the following functionalities:

 Communicate: Establish a connection to other gateways and connectors

 Send: Format the content of a message to the eBMS3.0 standard.

 Receive: Extract the contents of an eBMS3.0 message.

17

2.2 Key Components

2.2.1 Trust OK-Token

The idea behind the “Trust OK”-Token is to provide the possibility for the receiving party (e.g. a
judge) to recognize documents that have been filed by using a trustworthy advanced electronic
system based on signature or authentication.

By using the token in accordance with the “Agreement on a Circle of Trust”, the receiving party does
not need to validate the signature and the certificate itself. Regardless of the signature assessment
by the “Trust OK”-Token, the receiving party still has the right and is granted the means to revalidate
the signature independently.

The “Trust OK”-Token is human readable and contains either the result of the signature and
certificate validation or information regarding the authentication process of the user.

2.2.1.1 Circle of Trust1

Several identity providers agree upon that, in terms of identification of persons, they will trust
information provided by each one of them in the same way that they trust their own information.
That means that if one of them declares that he has properly registered a person, the others will
trust in this information. The same principle applies to certification authorities in terms of qualified
signatures: they trust each other’s certification in the same way they trust their own certification. A
closer description of the circle of trust is written down within the document “Agreement on a Circle
of trust - adopted by GA on 2013_02_20_v2.pdf”.

1 Description taken from D4.1.1 section 2.1.6

18

2.2.1.2 Advanced Electronic System

As e-CODEX Service Provider for the civil use cases, e-CODEX will only accept an ‘advanced
electronic system’, an electronic system which meets the following requirements:

(a) the created document is uniquely linked to the user;

(b) the system is capable of identifying the user;

(c) the document is created using means that the user can maintain under his control;

(d) any subsequent change of the data of a created document is detectable;

According to this definition, two approaches are considered to be suitable to be used within
e-CODEX: An authentication based- and a signature based advanced electronic system.
Where within an authentication based system a user’s identity is meant to be validated by a
highly secured environment, the signature based system relies on a signature’s data to
identify the user. A system only using an electronic signature shall use at least an advanced
electronic signature that is in accordance with the signature directive2 to meet the
requirement to be an advanced electronic system.

In case of an authentication based system, an authentication service provider is allowed to
add a signature to a business document to enhance the security of the document and to
approve the successful authentication of the claimant of the business document.

2 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31999L0093:EN:NOT

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31999L0093:EN:NOT

19

2.2.2 ASiC-S Container

The important task to preserve the link between the “Trust OK”-Token and its associated documents
and signatures is fulfilled by choosing the ASiC-S container, a data container holding different data
objects and associated signatures within a ZIP file.

Figure 2: ASiC Container Structure

By using this container format:

 The relation between the token and its files can be preserved.

 The integrity of the “Trust OK”-Token can be preserved.

 Any change of content is detectable. This includes:

o Addition of unrelated files.

o Removal of existing files.

o Modification of existing files.

 Long-term validity can be achieved by using archival signatures.

The container will be generated and signed within the sending country’s connector and validated by
the connector on the receiving side.

Details including the specification can be found in section 5.6.3.

20

2.2.3 Digital Signature Services

DG Market’s Digital Signature Services (DSS) libraries provide a solution to create and validate
signatures that follow the ETSI standards and thereby should be accepted across Europe. Thereby,
the close collaboration with ETSI is reflected in both signature creation and signature verification.

WP4 decided, together with the e-Justice portal, that DSS offers the most appropriate solution for
e-CODEX needs.

2.2.4 Signature Certificate

The “Trust OK”-Token requires to be signed to ensure that it has been created by the sending
connector and that it has not been altered. For this reason, a signature certificate is located in the
connector, not only signing the “Trust Ok”-Token, but signing the whole ASiC-S container as well.

By using consistent connector signatures, it can be avoided that different nationally accepted
signature formats are used to sign the token which would negate the advantage of using the “Trust
OK”-Token to not having to validate signatures across borders.

This is based on decision 27 of the e-CODEX deliverable D7.3 “High Level Architecture Definition”.

21

3 Functionalities

3.1 Connector

3.1.1 General Description

The connector can be located either on the same system as each country’s national gateway or on a
separate system with a secured connection to the respective national gateway and has the task to
convert the message data from national format to e-CODEX format and vice versa. It also validates
signatures applied to documents submitted by a Service Provider, generates and validates “Trust
OK”-Token and verifies the validity of ASiC-S containers transmitted via e-CODEX.

3.1.2 Connector (outgoing)

The connector (outgoing) is located on the sending side and has the task to convert the message data
from national format to e-CODEX format. It also validates documents, signed or not, submitted by
the national service provider. The validation results are verified through generation of a signed “Trust
OK”-Token.

The connector (outgoing) is able to receive data from different service providers: One can be the
e-Justice Portal that basically acts as a European service provider, the others could be the different
national e-CODEX service providers. In all cases, the connector will create both the “Trust OK”-Token
and the ASiC-S container and thus generates signatures on both of them using DSS and the
connector’s certificate.

3.1.2.1 e-Justice Portal

The e-Justice Portal decided to use DSS for providing the functionality to sign documents.

By doing so, possible signatures on documents submitted via the portal are automatically restricted
to the signatures supported by e-CODEX, simplifying the process of signature validation.

The DSS validation report is available in English and will be included in the “Trust OK”-Token.

3.1.2.2 National e-CODEX Service Provider

Each Member State will have its own national solution to ensure the validity of documents.

Regardless of whether this is achieved by signing the documents or by using an authentication-based
advanced electronic system, the national service provider can provide a validation report, either in
English and/or in the country’s official language, which will be included in the “Trust OK”-Token.

22

3.1.3 Connector (incoming)

The connector (incoming) is located on the receiving side and has the tasks to convert the message
data from e-CODEX format to national format and to check the signatures of the ASiC-S Container
and the “Trust OK”-Token. If the integrity of all documents is guaranteed, the documents can be
passed on to the recipient.

It still has to be decided what procedure applies if the documents cannot be validated successfully. A
possible solution would be to add a watermark3 to the “Trust OK”-Token to indicate that it is
defective and continue with the submission of the documents to the recipient.

3.2 Recipient

3.2.1 Manual Revalidation

The recipient (i.e. a judge) should always have the possibility to revalidate documents.

Instead of revalidating the original signatures on a document cross border, revalidating the signature
on the “Trust OK”-Token is sufficient as the main purpose of the token is to attest that the
documents are legally valid in the sending country.

As the provision of this functionality is not within the scope of e-CODEX, a member state that sees a
need to provide this functionality to its end users will have to create a solution to do so itself.

3 A watermark is a visible overlay embedded in the document.

23

4 Processes and Tasks

4.1 Submission of Documents

A user of e-CODEX submits and receives files though his national system. Such systems, for the
purpose of e-CODEX, act as e-CODEX Service Provider.

This chapter describes the complete process of submitting a business document from the Service
Provider (SP) in the sender’s country up to the delivery to the Service Provider / the user in the
receiving country. For a better overview, it is divided into sending and receiving side.4

* The step “Certificate Verification” only takes place when an authentication based system is meant to
impose additional security by using the signature of an authentication service provider. This step does
NOT describe the certificate validation against a CRL or an OCSP as this is handled within the step
“Signature Verification”.

Figure 3: Submission of business documents - Sending side

24

1 SP: Authenticate the User:
The Service Provider authenticates the user by means not within the scope of
e-CODEX.

2 SP: Create the Business Document:
After successful authentication, the user is able to create a business document based
on the data he provides as input.

3 SP: (Optional) Give the User the Ability to Sign the Business Document:
If the Service Provider supports signature, it can grant the user the possibility to sign
the business document.

4 SP: Send the Business Document and Attachments to the Connector:
All related documents including the attachments are sent to the connector.

5 Con: Receive the File(s):
The connector receives the files.

6 Con: Signature Verification:
The connector checks the integrity of the business document by checking the applied
signatures. For this reason, the connector can rely either on the signature validation
of e-CODEX and DSS or on the nationally accepted solution.
The process of signature verification is described in more detail in section 4.2.

7 Con: Certificate Verification:
When an authentication based advanced electronic system is being used, a need
comes up in order to secure a user’s successful authentication at the time a business
document is being created. For this reason, it is possible to sign a file within an
authentication based system e.g. by using the signature of an authentication service
provider. Within this step the certificate used for this signature can be verified
against a list of trusted certificates to verify whether the authentication service
provider signing the document is among the trusted service providers. Thereby the
list of trusted service providers can be configured for every member state separately.
A closer description about the process of certificate verification is described in
section 4.6.

8 Con: Create the “Trust OK”-Token:
All relevant information provided by the Service Provider and the results of the
signature verification are processed in the generation of the “Trust OK”-Token. Even
if the language of the validation report varies due to national implementations, the
token itself is only available in English and provided in both supported formats: PDF
and XML. See section 4.3 for more information.

9 Con: Create the ASiC-S Signature Container:
The ASiC-S signature container containing the documents and the token is created
and signed. See section 4.4 and 4.5 for detailed information.

25

10 Con: (Optional) Verify ASiC-S Container
After creation of the ASiC-S container, the created data can be verified. Thereby it
can be verified whether:

 All signatures (ASiC-S container and both versions of the “Trust Ok”-Token) are
valid.

 The content of the token is reasonable (e.g. authentication-based token contains
authentication data)

 The xml version of the token contains a valid reference to the business document
inside the ASiC-S container.

11 Con: Transform the Message to European Format:
Within the connector, the eCM transforms the message to the European format. The
definition of the European format is provided by WP5.

12 Con: Send the File(s) to the Gateway:
The connector submits the message to the gateway.

13 SG: Transportation of File(s):
The sending gateway handles the transportation of the message via the e-CODEX
network.

26

Figure 4: Submission of business documents – Receiving side

27

1 RG: Transportation of File(s):
The receiving gateway receives the message via the e-CODEX network and forwards
it to the connector.

2 Con: Receive the File(s):
The connector receives the files.

3 Con: Verify ASiC-S container:
After receiving the ASiC-S container, the created data can be verified. Thereby it can
be verified whether:

 All signatures (ASiC-S container and both versions of the “Trust Ok”-Token) are
valid. A closer description is written down in section 0.

 The content of the token is reasonable (e.g. authentication-based token contains
authentication data)

 The xml version of the token contains a valid reference to the business document
inside the ASiC-S container.

4 Con: (Optional) Sign the Signature Container:
After all checks have been completed successfully, the connector signs the signature
container to guarantee the integrity of the token and the content archive.

5 Con: Transform to National Format:
The message is transformed from European format to the nationally accepted
format.

6 Con: Send the Document(s) to the SP:
The connector forwards the message to the Service Provider.

7 SP: Receive the Documents:
The Service Provider receives the documents and takes care of delivering them to the
end user.

8 SP: (Optional) Check the Signature on the Document:
The Service Provider also provides means to let the user revalidate signed documents
if he wants to do so by forwarding the files in question to the connector and
displaying the results of the revalidation. If desired, this functionality has to be
implemented by each member state itself.

28

4.2 Signature Verification

This chapter describes the process of signature verification and the collection of information
necessary for the creation of a validation report.

4.2.1 Preconditions

 A file, signed or unsigned, with the need of a signature validation.

4.2.2 Process Flow: Signature Verification

1 Supported Signature available?
Depending on whether the file is
signed with a signature supported
by e-CODEX or not, the process
continues as followed:

1.1 Yes:
If the file is signed with a
supported signature, the
signature will be checked. The
file might be signed more than
once and every signature
should be checked according
to the process described in the
following chapter.

1.2 No:
If the file is not signed with a
supported signature at all, a
validation report entry should
be generated that states that
the file is not signed with a
supported signature.

2 The Validation Report is created
basing the conclusion on each test
result. The process of the report
creation is similar to the process
described in section 4.6.

Figure 5: Basic View on
Signature Verification

29

4.2.2.1 Predefined Process: Check Signature

1 Signature Integrity Analysis:
The first step in analysing a signature is performing the
integrity check on the signature itself, see section 4.2.2.2.

2 VRE – Signature Integrity Analysis Result Information:
The results of the signature integrity analysis are added to
the report.

3 Certificate Integrity Analysis:
At this point, the certificate analysis described in section
4.2.2.3 is performed.

4 VRE - Certificate Integrity Analysis Result Information:
The results of the certificate analysis are added to the
report.

Figure 6: “Check Signature”

30

4.2.2.2 Predefined Process: Signature Integrity Analysis

1 Signature Structure Analysis:
This is the process that analyses the signature to find
out which signature standard (XAdES, PAdES) and
what profile (BES, etc.) are used and whether the
signature is in accordance with the approved
standards or not.

2 VRE - Signature Structure Information:
The results of the signature structure analysis are
added to the report.

3 Certificate Access:
By accessing the signatory’s certificate, the public
key and information regarding used algorithms can
be extracted.

4 VRE - Certificate Information:
Information about the signatory’s certificate and
used algorithms are added to the report.

5 Integrity Verification:
Use the information of the certificate to validate the
signature and to verify that the signed content has
not been changed.

6 VRE - Integrity Information:
The results of the complete integrity analysis are
added to the report.

Figure 7: Closer view on
"Signature Integrity Analysis"

31

4.2.2.3 Predefined Process: Certificate Integrity Analysis

1 Certificate Structure Analysis:
This is the process that analyses the certificate
structure to receive detailed certificate information
including time stamp information and qualified
statements.

2 VRE - Certificate Structure Information:
The results of the certificate structure analysis are
added to the report.

3 Certificate Integrity Analysis:
As a certificate is signed by the issuing CA, the
signature on the certificate needs to be checked to
verify its integrity. The necessary steps are described
in Figure 7 in steps 3 to 6.

4 VRE - Certificate Integrity Information:
The results of the certificate integrity analysis are
added to the report.

5 Certificate Authority Analysis:
Not every CA is allowed to issue certificates to create
signatures with a legal value. For this reason, the CA
has to be validated as described in Figure 9.

6 VRE - Certificate Authority Validation:
The results of the certificate authority validation are
added to the report.

7 Certificate Status Analysis:
Finally there is the possibility that the certificate is
invalid, e.g. if it has been revoked. The certificate
status analysis, as it is closer described in section
4.2.2.5, helps to perform this task.

8 VRE - Certificate Status Information:
The results of the complete certificate status check
including OCSP and CRL information are added to the
report.

Figure 8: Closer view on
"Certificate Integrity Analysis"

32

4.2.2.4 Predefined Process: Certificate Authority Analysis

1 Access CA Information:
The information about the issuing CA has to be extracted
from the certificate. In a usual X.509 v3 certificate, this can
be located within the entry “Issuer“ and follows the rules
defined in RFC 4519.

2 Extract Country Information:
Usually, the information about the issuing CA contains an
attribute about its countryName (e.g. c = DE). This
information needs to be extracted to be able to locate the
national TSL of the issuing CA.

3 Contact EU TSL:
The European TSL, containing links to every national TSL
within European borders, has to be contacted to discover
the national TSL containing information about national CAs.

4 Check signature on EU TSL:
As the European TSL has been signed by an official authority
to verify its validity, the signature on the European TSL
should be validated.

5 Extract National TSL:
Based on the country information of the issuing CA, the
responsible national TSL can be extracted from the
European TSL.

6 Contact National TSL:
The extracted, national TSL can be contacted to verify the
validity of the CA.

7 Check signature on National TSL:
Equal to the EU TSL, every national TSL is signed to ensure
that it has not been altered and that it is valid.

8 Validate CA at National TSL:
The CA can be validated at the national TSL. For this reason,
at least two actions should be performed:

 Ensure, that the CA can be discovered within the
national TSL

 Compare the CA certificate written down in the national
TSL with the issuer certificate written down in the
signature.

9 VRE - CA Validation Information:
The collected information about the validity of the CA is
added to the validation report.

Figure 9: Closer view on
"Certificate Authority Analysis"

33

4.2.2.5 Predefined Process: Certificate Status Analysis

1 Get OCSP Information:
Details for OCSP verification are obtained
either from the certificate or from the TSL.

2 OCSP Certificate Status Check:
If an OCSP is available, the OCSP certificate
status check is performed.

3 VRE - OCSP (Validation) Information:
The results of the OCSP check is added to
the validation report.

4 Status Check returned “revoked” or “good”
If the response of the OCSP contains a valid
result, the validation via CRL is not needed.

5 Get CRL Information:
Details for CRL verification are obtained
either from the certificate or from the TSL.

6 CRL Certificate Status Check:
If CRL is available, the CRL certificate status
check is performed.

7 VRE - CRL (Validation) Information:
The results of the CRL check are added to
the validation report.

Figure 10: Closer view on
Certificate Status Analysis

34

4.2.3 Post Conditions

 At least one file has been validated.

 The XML version of a validation report, containing the results of each process step, has been
generated.

4.3 Create the “Trust Ok”-Token (PDF & XML)

This chapter describes the process of the creation of both the XML- and the PDF version of the “Trust
Ok”-Token.

4.3.1 Preconditions

 In case of a signed business document: The signature on the business document has to be
verified. The results of this validation have to be accessible for further processing within the
national connector.

 If the document was created by an authentication based “advanced electronic system”, details
regarding this advanced electronic system and the identity of the user have to be provided.

35

4.3.2 Data flow: Creation of the “Trust Ok”-Token

Figure 11: Creation of a “Trust Ok”-Token

36

1. Create Empty Token:
Create both an empty XML- and an empty PDF document to be the basis for the
“Trust Ok”-Token.

2. Advanced Electronic System?
Checks whether the PDF version of the business document has been created by an advanced
electronic system.

3. Add Information about Advanced Electronic System to Token:
Add the information, that the PDF version of the business document has been created by usage
of a signature- or authentication based advanced electronic system, to both the XML and the PDF
version of the “Trust Ok”-Token.

4. Validation Report?
Checks whether a validation report is in place.

5. Add Information about Validation to Token
In case of a validation report being in place: Add the content of the validation report to the
token.

6. Signature Based Advanced Electronic System?
Checks whether a signature is mandatory for the business document. In case of a signature being
mandatory, it is necessary that a validation report is in place. In case of authentication based
systems, a validation report is optional.

7. Add “Not possible to affirm trust” to Token:
In case of a signature based system without validation report, the document shall not receive any
trust and the result of the technical validation will be set to “FAIL” (The colour will be “red”).

8. Add Additional Information to the Token:
All additional information being of interest for the end user, e.g. conformance of the business
documents legal value within the borders of the creating eCM, is added to both versions of the
token. A closer view on what Information should be relevant is written down in section 5.6.

9. Create PAdES Signature on PDF- and XAdES Signature on XML-Token:
Sign the created “Trust Ok”-Token with a signature that is in conformance with the respective
standard.

4.3.3 Post Conditions

 The XML- and the PDF version of the “Trust Ok”-Token have been created, including the
validation report and the information about the existence of an “advanced electronic system”.

 Both versions of the “Trust Ok”-Token have been signed.

37

4.4 Create Content Archive

The usage of ASiC-S dictates, that only one file can be signed by an undefined number of signatures.
For this reason, the business document, the “Trust Ok”-Token and all attachments the user decides
to submit along with the business document have to be packaged in one single, ZIP based archive
before being able to create a valid ASiC-S signature container. As the creation of the ASiC-S signature
container will take place in the connector, the ability to create this ZIP archive will be mandatory for
the connector as well. The creation of the ASiC-S signature container will be closer described in
section 4.5.

4.4.1 Preconditions

 The PDF version of the business document is in place:

o The integrity and validity of the business document have to be verified, either by validating
the signature on the document or the identity of the document creator.

 Both the PDF- and the XML version of the signed “Trust Ok”-Token have to be available.

 Attachments have to be filtered with respect to the file size and supported or unacceptable file
formats (e.g. executable files). The restrictions for the file formats are written down in section
5.6.3.2, the limit for the file size is defined in section 3.7 and 3.8 of e-CODEX deliverable D5.3.

 In case of the usage of detached signatures:

o The file containing the detached signature has to be in place.

38

4.4.2 Data flow: Creation of a Content Archive

1. Create a ZIP archive:
As first step, an empty ZIP based archive
has to be created.

2. Add more files?
Makes sure that every file will be added
to the archive.

2.1. Add file(s) to ZIP archive:
This step describes the process of
adding new files to the archive. This
is described in Figure 13: Closer view
on the process “Add file(s) to ZIP
archive”.

Figure 12: Creation of a Content Archive

39

4.4.3 Predefined Process: Add file(s) to ZIP Archive

Figure 13: Closer view on the process “Add file(s) to ZIP archive”

40

Kind of file?
Checks which functionality has to be used:

 Business Document

1.1. Existing Business Document?
Checks whether a Business Document already is in place or not.

o Replace Business Document:
Replaces the current business document in the ZIP archive.

o Add Business Document:
Add the business document to the ZIP archive

1.2. Set Attribute Business Document:
Set the respective attribute to remember the business document.

 “Trust Ok”-Token

2.1. Existing “Trust Ok”-Token?
Checks the attribute that has to be set when the “Trust Ok”-Token has been added to the
ZIP archive.

o Replace “Trust Ok”-Token:
Replaces the current “Trust Ok”-Token in the ZIP archive.

o Add “Trust Ok”-Token:
Add the “Trust Ok”-Token to the ZIP archive

2.2. Set Attribute “Trust Ok”-Token:
Set the respective attribute to remember the “Trust Ok”-Token.

 Detached Signature File

3.1. Existing Detached Signature:
Checks whether a file with a detached signature already is in place.

o Add Detached Signature File
Add the detached signature file to the ZIP archive.

o Replace Detached Signature File
Replaces the current detached signature file in the ZIP archive.

3.2. Set Attribute Detached Signature:
Set the respective attribute to remember the detached signature file.

 List of Attachments

4.1. Add all files to ZIP archive:
Add multiple files to the ZIP archive.

41

4.4.4 Post conditions

A single ZIP archive, containing one main document, one “Trust Ok”-Token, an undefined number of
attachments and optionally a detached signature file has been created and is available for further
processing. The attributes being used to remember the business document and the “Trust Ok”-Token
are only meant to be used for the creation of the ZIP archive and will not be a part of it.

4.5 Create and sign an ASiC-S signature container

The creation of a signature container following the ASiC-S standard has to be done after the creation
of a content archive (see section 4.4) and needs to be a part of the connector.

4.5.1 Preconditions

 A single ZIP archive, containing one business document, one signed PDF-“Trust Ok”-Token and an
undefined number of attachments has to be available.

o Optional detached signature file can be in place.

 The signed “Trust Ok”-Token has to be in place in XML format.

 The possibility to create signatures has to be available at the connector. This should be the
connector certificate at the connector the ASiC-S container is created at.

42

4.5.2 Data flow: Creation of ASiC-S Signature Container

1. Valid archive?
This is a validity check for the content archive
that will be signed by the ASiC-S signature
container. The steps of the validation process
are described in Figure 15: Closer view on
“Valid Archive?”.

2. If the content archive is valid:

2.1. Create signature container:
This step prepares the ASiC-S signature
container for the signature creation. The
processes done for this preparation are
described in Figure 16.

2.2. Create XAdES Signature:
The content archive is signed by a
detached XAdES signature. The process
of signature creation is described in
Figure 17.

2.3. Add XAdES signature to signature
container:
The created XAdES signature is added to
the ASiC-S signature container.

3. If the content archive is not valid:

3.1. Generate Error Report:
In case that the content archive is not
valid, an error report is filed.

Figure 14: Basic Process of ASiC-S signature container
creation

43

4.5.2.1 Valid Archive?

1. Valid file?
Checks whether the received file is a
ZIP based archive or not.

2. Existing Business Document?
As a business document is mandatory
for e-CODEX, an archive without a
business document has to be seen as
invalid.

3. Existing “Trust OK”-Token?
If there is a business document, there
has to be a “Trust OK”-Token as well.

4. Set Attribute “Archive” to valid or
invalid:
The attribute “Archive” is only set to
valid if the content archive meets all
requirements listed above.

4.5.2.2 Predefined Process: Create Signature Container

1. Create ZIP container:
The basis for the signature container is a
ZIP based container.

2. Add Mimetype to ZIP container:
The usage of the additional file
“mimetype” as it has been described in
[ASiC-S] section 5.2.2 is mandatory for this
container.

3. Add content archive to ZIP container:
Finally, the content archive, containing all
data that is meant to be signed, has to be
added to the signature container.

Figure 15: Closer view on “Valid Archive?”

Figure 16: Closer view on “Create signature container”

44

4.5.2.3 Predefined Process: Create XAdES Signature

1. Create XAdES Structure:
The basic structure of the detached XAdES signature as it has
been defined in [XAdES] section 4.4.1 has to be created.

Note: All information available at the time the structure is
created will be added to it. At this time, the XMLDSig-Part of
the XAdES signature will be empty!

2. Create signature:
The XMLDSig-Part of the XAdES signature is created, signing
the content archive as detached signature.

3. Add signature to XAdES structure:
The created XMLDSig-Part is added to the prepared XAdES
structure.

4.5.3 Post conditions

A valid ASiC-S signature container has been created:

 The content archive is signed once with a detached XAdES signature that has been created by the
connector of its SP of origin.

 The content of the signature container is a ZIP archive containing one business document, one
PDF version of the “Trust Ok”-Token, an undefined number of attachments and optionally a file
containing a detached signature.

 The file extension of the ASiC-S signature container still is “.zip.asics”.

Figure 17: Closer view on “Create
XAdES Signature”

45

4.6 Certificate Verification

This part describes the certificate verification against a TSL of trusted authentication service
providers. It only takes place in case of an authentication based system being secured by a signature
being present on the business document. This chapter does NOT describe the certificate verification
taking place within the signature verification as this already has been described within chapter
4.2.2.5.

4.6.1 Precondition:

 An authentication based system has to be in use. Within this system the authentication service
provider has to sign the business document to accredit that the person that created the
document was successfully authenticated at the time of document creation and thereby really is
the claimant of the document.

 A valid TSL has to be configured, being in accordance with the specification ETSI TS 102 231. This
TSL has to contain a list of certificates that belong to trusted authentication service providers.

4.6.2 Data flow: Certificate Verification

1. Signature Present?
As, for a certificate verification
against a TSL, a certificate
needs to be in place, the first
step is to check whether a
signature is in place where the
certificate can be extracted
from.

2. Authentication Based System?
If a signature is present, it has
to be checked whether the
configured system is
authentication based. In case
of a signature based system,
the certificate check is not
necessary as the certificate is
intended to belong to a user
and not to a trusted
authentication service
provider.

3. Extract Certificate from
Signature
If every precondition is met,
the certificate of the signatory
is extracted from the
signature.

Figure 18: Closer View on
"Certificate Verification”

46

4. Check Certificate against TSL
The certificate then is checked against a configured TSL. If the certificate is present within the
TSL, the signatory of the document has been verified as trusted authentication service
provider.

5. Consider Validation Result within Legal Validation
The result of the validation will be taken into account at the time the legal validation result is
created. The fact that the signatory is not a trusted authentication service provider will have
a negative effect on the legal validation result of the business document.

4.6.3 Post conditions

The certificate has successfully been validated against the configured TSL.

47

4.7 Create Validation Report

1.- 4. Process Signature Information:
In this step, information regarding the signature itself is processed.
This includes the occurrence of a supported signature, its structural
information, the used algorithms as well as the results of the
integrity check.

5.- 6. Process Certificate Information:
In this step, information regarding the signatory’s certificate is
processed. This includes the results of the structural analysis, the
integrity checks and the OCSP and / or CRL certificate status checks.

7. Process Certificate Authority Information:
All information related to the certification authority that issued the
signatory’s certificate is processed at this point.

8. Process Certificate Status Information
Information received from either the OCSP or the CRL are processed
within this step.

9. Calculate Trust-Level:
The legal- and technical trust level is calculated based on a set of
rules that is specified independently for each sending country. This
calculation relies on the results of previously performed analytic
processes that are compared to the applicable rule set.

Some examples:

 If all required tests are successful, both trust levels are set to
green, according to the traffic light principle.

 If it is not possible to conduct some tests successfully, but these
are not required in the sender country to have a legally valid
document, this can also be considered and the legal trust level
could be set to green. Depending on the sending member states
needs, the technical trust level could be set to green or yellow.

Figure 19: Closer View on
"Create Validation Report”

48

5 Description of modules and building blocks to be realised

5.1 Java Library for Usage within the Connector

The signature verification, creation of the “Trust-Ok”-Token and the creation of the ASiC-S signature
container will be a part of the connector that has to be implemented for every e-CODEX gateway. To
prevent every eCM to have to create a solution on its own, e-CODEX will create a library to provide
these functionalities. This Java library will be provided as single Java archive (jar file) to make its
usage as comfortable as possible.

5.1.1 Requirements

To make the usage of the library possible, the following requirements need to be fulfilled:

 Java needs to be installed. (At least Java 1.6)

 Connection to the internet needs to be in place.

 e-CODEX connector certificate needs to be accessible.

5.1.2 Packaging

The functionalities of the library are, from a user’s point of view, separated into two important
packages:

 eu.ecodex.dss.model
The package “model” contains all classes that are able to handle and to store the actual
information of the library.

 eu.ecodex.dss.service
This package contains all classes and interfaces that provide the functionality and thereby are
necessary to use the library

49

5.1.3 Interfaces

This chapter will provide specifications for interfaces that can be implemented for the usage within
e-CODEX. The usage of interfaces allows the library to use various implementations in situations
where it might be needed (e.g. it is planned to be possible either to use DSS or a national solution to
validate signatures)

5.1.3.1 ECodexContainerService

An implementation of this interface will be the main class of the library providing all necessary
methods for the handling of both the ASiC-S container and the “Trust Ok”-Token.

Class Name: ECodexContainerService

Package: eu.ecodex.dss.service

Method Summary

ECodexContainer addSignature(ECodexContainer container)

CheckResult check(ECodexContainer container)

ECodexContainer create(BusinessContent businessContent, TokenIssuer issuer)

ECodexContainer receive(InputStream asicInputStream, InputStream tokenStream)

void setContainerSignatureParameters(SignatureParameters sigParam)

void setTechnicalValidationService(
ECodexTechnicalValidationService validationService)

void setLegalValidationService(
ECodexLegalValidationService validationService)

void setEnvironmentConfiguration(EnvironmentConfiguration conf)

Method Details:

 addSignature(ECodexContainer container)

Method to add an additional signature to an existing ASiC-S container.

Parameters:
container An ECodexContainer object as it can be created using the

methods “create” and “receive” of an
ECodexContainerService

Returns:
An ECodexContainer object being signed with an additional signature.

50

 check(ECodexContainer container)

Verifies the integrity and the content of a given ASiC-S container and the respective “Trust Ok”-
Token information.

Parameters:
container An ECodexContainer object as it can be created using the

methods “create” and “receive” of an
ECodexContainerService

Returns:
A CheckResult object, containing information about discovered discrepancies within the
validation of the ASiC-S container and the “Trust Ok”-Token.

 create(BusinessContent businessContent, TokenIssuer issuer)

This method is used to create an ASiC-S container and a “Trust Ok”-Token.

Parameters:
businessContent An object providing the business content for the ASiC-S

container and the “Trust Ok”-Token, e.g. business
document and attachments.

issuer Information about the Issuer of the “Trust Ok”-Token,
e.g. the name of the issuer and the country.

Returns:
An ECodexContainer object being signed by the connector it has been created in.

 receive(InputStream asicInputStream, InputStream tokenStream)

“receive” can be used at an receiving connector to create an ECodexContainer object out of
received data streams.

Parameters:
asicInputStream An input stream for an received ASiC-S container.

tokenStream The respective XML “Trust Ok”-Token.

Returns:
An ECodexContainer object being usable for further processing.

 setContainerSignatureParameters(SignatureParameters sigParam)

As the DSSECodexContainerService needs to be able to create signatures on both the ASiC-S
container and the “Trust Ok”-Token, this method will be used to configure the signature creation
functionality.

Parameters:
sigParam The signature parameters, e.g. the keystore, the signing

certificate and the respective passwords.

51

 setTechnicalValidationService(ECodexTechnicalValidationService validationService)

For the first part of a business documents validation, a technical validation service needs to be
configured to make the technical evaluation for a given document possible.

Parameters:
validationService The functionality to do a technical validation for a given

business document.

 setLegalValidationService(ECodexLegalValidationService validationService)

The second part of a business documents validation is its legal assessment. For this reason, a
LegalValidationService needs to be set within an ECodexContainerService object.

Parameters:
validationService The functionality to do a legal validation for a given

business document.

 setEnvironmentConfiguration(EnvironmentConfiguration conf)

The EnvironmentConfiguration can be used to set various parameters within an
ECodexContainerService object. Currently known, possible parameters are e.g. proxy
configuration and the certificate store configuration, which checks whether a received ASiC-S
container has been created by an authority listed within the certificate store.

Parameters:

conf The actual configuration.

52

5.1.3.2 ECodexTechnicalValidationService

The ECodexTechnicalValidationService can be used within an implementation of an
ECodexContainerService to create a technical assessment for a given document. Thereby it does not
matter whether this assessment is based on authentication data or a signature.

Class Name: ECodexTechnicalValidationService

Package: eu.ecodex.dss.service

Method Summary

TokenValidation create(Document businessDocument, Document detachedSignature)

Document createReportPDF(Token token)

void setEnvironmentConfiguration(EnvironmentConfiguration conf)

 create(Document businessDocument, Document detachedSignature)

Usable to verify the technical validity of a document. In case of a signature-based system, this
will be a verification of the document’s signature. Within an authentication-based system, this
will be a validation of given authentication data.

Parameters:

businessDocument A business document the validation has to be done for.

detachedSignature Optional parameter for documents being signed with a
detached signature.

Returns:
A TokenValidation object, containing the validation data for the given business document in a
standardised way.

 createReportPDF(Token token)

If the “Trust Ok”-Token is meant to provide a PDF version of a validation report (e.g. the DG
MARKT DSS validation report as it is created at the time of signature validation), this method can
be used to transform existing validation data into a PDF document.

Parameters:

token If access to existing “Trust Ok”-Token data is necessary,
this attribute is used.

Returns:
The PDF version of a validation report.

53

 setEnvironmentConfiguration(EnvironmentConfiguration conf)

The EnvironmentConfiguration can be used to set various parameters within the
ECodexTechnicalValidationService object.

Parameters:

conf The actual configuration.

5.1.3.3 ECodexLegalValidationService

An ECodexLegalValidationService can be used by an ECodexContainerCreationService to create a
legal assessment for a business document. Thereby, the legal assessment can be based on the results
of an ECodexTechnicalValidationService.

Class Name: ECodexLegalValidationService

Package: eu.ecodex.dss.service

Method Summary

LegalValidationResult create(Token token)

Void setEnvironmentConfiguration(EnvironmentConfiguration conf)

 create(Token token)

Creates a legal assessment for a given business document. The validation results of a technical
validation thereby can be used as basis for the legal validation.

Parameters:

token Technical validation data for a given business
document.

Returns:
A LegalValidationResult object, containing the legal validation data for a given business
document.

54

 setEnvironmentConfiguration(EnvironmentConfiguration conf)

The EnvironmentConfiguration can be used to set various parameters within the
ECodexLegalValidationService object.

Parameters:

conf The actual configuration.

5.1.4 Classes and Basic Interface Implementations

This chapter will give an overview of the most important classes of the e-CODEX library. In addition it
will give an overview of the basic implementation for the previously described interfaces and a
description about how they are meant to be implemented.

5.1.4.1 DSSECodexContainerService

The DSSECodexContainerService is an implementation of the interface “ECodexContainerService”
mainly relying on the functionality of DG MARKT DSS to create and verify the necessary signatures.

Class Name: DSSECodexContainerService

Package: eu.ecodex.dss.service.impl.dss

Implemented Interface: eu.ecodex.dss.service.ECodexContainerService

Implementation Details:

 addSignature(ECodexContainer container)

As DG MARKT DSS supports the handling of ASiC-S containers, the implementation will use the
functionalities of DSS libraries to add additional signatures to a given container object.

 check(ECodexContainer container)

The basic implementation of the method “check” will be used to do the following analysis of
received and created ASiC-S containers:
 Verifies the signature on both the XML and the PDF version of the “Trust Ok”-Token and the

ASiC-S container.
 Checks whether the connector certificate the sending side used is present within the official

e-CODEX connector certificate store. The respective certificate store can be configured within
the DSSECodexContainerServices environment configuration.

 Checks whether the “Trust Ok”-Tokens content is plausible, e.g. if authentication data is
present within an authentication based “Trust Ok”-Token.

55

 create(BusinessContent businessContent, TokenIssuer issuer)

Within the method “create”, the following functionalities will be provided:
 Assessment of a given business document, using the legal- and technical validation service of

the DSSEcodexContainerService object.
 Creation of “Trust Ok”-Token (PDF and XML version).
 Signing of the “Trust Ok”-Token, using the SignatureParameters being set for the

DSSEcodexContainerService object.
 Creation of ASiC-S container, using the SignatureParameters being set for the

DSSEcodexContainerService object.

 receive(InputStream asicInputStream, InputStream tokenStream)

The implementation of the method “receive” will create an ECodexContainer object out of the
received data. The content of the “Trust Ok”-Token thereby is received from the XML version of
the received “Trust Ok”-Token, taken from the parameter “tokenStream”.

5.1.4.2 DSSECodexTechnicalValidationService

This class will be the basic implementation of the interface “ECodexTechnicalValidationService” and
can be used for the technical validation within either a signature based system or an authentication
based system being secured with a signature. For signature validation it mainly relies on the
functionality of DG MARKT DSS.

Class Name: DSSECodexTechnicalValidationService

Package: eu.ecodex.dss.service.impl.dss

Implemented Interface: eu.ecodex.dss.service.ECodexTechnicalValidationService

Implementation Details:

 create(Document businessDocument, Document detachedSignature)

The method “create” of the basic implementation is called by the basic implementation of the
ECodexContainerService and fulfils several tasks:
1. Validation of a signature on a given business document

The validation of the business document will be done using the signature validation
functionality of DG MARKT DSS, whereby detached signatures shall also be taken into
account. The result of this validation (an XML validation report) then can be used as basis for
the next task.

2. To provide a standardised way to use the validation information, the method “create” will
match the original XML validation result to the structure of a TokenValidation object. The
original XML validation report thereby will not get lost and is meant to be transmitted within
the TokenValidation object as well.

3. In case of an authentication based system with a signature, the used certificate will be
verified against a configured list of trusted certificates to make sure that the signatory of the
business document is a trusted authentication service provider.

4. For further processing, the TokenValidation object will be transmitted back to the
ECodexContainerService implementation.

56

 createReportPDF(Token token)

DG MARKT DSS already has a method to create a PDF validation report out of an existing XML
validation report as it has been created by DG MARKT DSS. For this reason, the mentioned
functionality simply will be used within this method to create the PDF version of the original
validation data.

The new desired behaviour, to be able to react on authentication based systems being secured by a
signature, made adjustments within the library necessary. Due to this reason, the methods described
below have been added to the DSSECodexTechnicalValidationService with the release of version 1.8:

 setAuthenticationCertificateTSL(String authenticationCertificateTSL)
setAuthenticationCertificateTSL(InputStream authenticationCertificateTSL)
setAuthenticationCertificateTSL(byte[] authenticationCertificateTSL)

This method (in one of its versions) can be used to configure the list of trusted certificates to be
used for certificate verification. The format of the trusted list being configured thereby has to be
in accordance with the ETSI standard for TSLs, TS 102 231.

 isAuthenticationCertificateLOTL(boolean isLOTL)

Analog to the European TSL, the configured TSL could be a LOTL, a “list of the lists”. This kind of
list would not contain entries for trusted certificates. Instead the list would refer to multiple TSLs,
each containing a list of trusted certificates. In case of this kind of list being present this method
has to be used with its parameter being set to “true”.

 initAuthenticationCertificateVerification()

After configuration this method has to be used for one time initialisation of the TSL.

57

5.1.4.3 DSSECodexLegalValidationService

This basic implementation of the interface ECodexLegalValidationService provides a legal assessment
for a document that will be based on the results of the DSSECodexTechnicalValidationService. The
rules for this legal validation are as followed:

 Legal validation is valid if the result of the technical validation was “Successful”

 Legal Validation is invalid if the technical validation result is “Failed” or “Sufficient” or, in case of
authentication based systems with additional signature, if the certificate used for the signature is
not within the list of trusted authentication service providers.

Class Name: DSSECodexLegalValidationService

Package: eu.ecodex.dss.service.impl.dss

Implemented Interface: eu.ecodex.dss.service.ECodexLegalValidationService

Implementation Details:

 create(Token token)

Provides the result of the basic legal validation as a LegalValidationResult object.

58

5.1.4.4 ECodexContainer

Class Name: ECodexContainer

Package: eu.ecodex.dss.model

The class ECodexContainer will provide objects containing all information of an ASiC-S container. An
ECodexContainer shall contain the following data:

 ASiC-Document

The ASiC-S signature container as “in memory” document. This container is ready to be
transported within the e-CODEX transport infrastructure.

 Business Document

The actual business document for a given use case and the document the created “Trust Ok”-
Token refers to.

 Business Signature

This attribute is used in case of a detached signature being in place for a given business
document. If there is no detached signature, this attribute can be null.

 List of Business Attachments

Within this attribute, a list of attachments will be provided, containing all attachments that have
been added to a business document.

 Token Documents (PDF and XML Version)

The “in memory” representation of both the PDF- and XML version of the “Trust Ok”-Token.

 Token Information

The token information will make the information of a “Trust Ok”-Token accessible within a Java
environment.

59

5.1.4.5 Token

Class Name: Token

Package: eu.ecodex.dss.model.token

The class “token” will provide the information of a “Trust Ok”-Token to any Java program that needs
to work with a token’s data. The structure of the token should be as followed:

Figure 20 Structure of the class "token"

60

5.1.4.6 MemoryDocument

This class can be used to improve the handling of files. It implements the interface “Document” and
is used to provide an “in memory” representation of a given document.

Class Name: MemoryDocument

Package: eu.ecodex.dss.model

Implemented Interface: eu.ecodex.dss.model. Document

Constructor Summary

MemoryDocument (byte[] document)

MemoryDocument (byte[] document, String name)

MemoryDocument (byte[] document, String name, MimeType mimeType)

Constructor Details:

 MemoryDocument (byte[] document)

Initialises a MemoryDocument object with a nameless document and without any information
about the mimetype.

Parameters:
document the content of a document

 MemoryDocument (byte[] document, String name)

Initialises a MemoryDocument object, whereby the mimetype of the object will be set
automatically based on an analysis of the filename.

Parameters:
document the content of a document

name the filename of the document. In case of an existing
extension, the mimetype of the MemoryDocument
object will be set automatically, e.g. the mimetype of the
file “Message.xml” will be set to “MimeType.XML”. In
cases of no or an unknown file extension, the mimetype
will be set to “MimeType.BINARY”.

61

 MemoryDocument (byte[] document, String name, MimeType mimeType)

This constructor should usually be used when working with MemoryDocument objects as it
makes necessary to give all important information to work with a file.

Parameters:
document The content of the document

name The filename of the document

mimeType The mime type of the document

Method Summary

InputStream openStream()

String getName()

MimeType getMimeType()

Method Details:

 openStream()

Returns a stream to the document.

Returns:
A ByteArrayInputStream to the document.

 getName()

Returns the name.

Returns:
The name of the document as String.

 getMimeType()

Returns the mime type.

Returns:
The mime type of the document as MimeType object.

62

5.1.5 Enumerations

5.1.5.1 Advanced Electronic System

The enumeration AdvancedElectronicSystem will be usable to help with the decision whether the
advanced electronic system is authentication- or signature based. As the advanced electronic system
mostly is used within the information given to a “Trust Ok”-Token, the enumeration concerning the
advanced electronic system will be located within the model-package of the token.

Enumeration Name: AdvancedSystemType

Package eu.ecodex.dss.model.token

Name Translation

AUTHENTICATION_BASED Authentication-based

SIGNATURE_BASED Signature-based

Method Summary

String getValue()

Method Details:

 getValue()

Returns the translation to the advanced electronic system the object has been set to.

Returns:
The translation for the advanced electronic system, e.g. “Authentication-based” if the
AdvancedSystemType has been set to “AUTHENTICATION_BASED”.

63

5.1.5.2 MimeType

The enumeration MimeType will alleviate the handling of mime types within the handling of
documents. At least, the following MimeTypes should be supported.

Enumeration Name: MimeType

Package eu.ecodex.dss.model

Name Translation

BINARY application/octet-stream

XML text/xml

PDF application/pdf

Method Summary

MimeType fromFileName(String name)

String getCode()

Method Details:

 fromFileName(String name)

This method returns a MimeType based on the extension of a filename.

Parameters:
name Name of a document

Returns:
The mime type of a filename, e.g. “XML” for the filename “Message.xml”.

 getCode()

Returns the translation to the mime type the object has been set to.

Returns:
The translation for the mime type, e.g. “text/xml” if the mime type has been set to “XML”.

64

5.1.5.3 Configuration

As the library is meant to be usable on different systems, several properties might need to be
initialized or configured to guarantee faultless procedures.

5.1.5.4 Certificate

The library will have to create valid signatures for several documents, e.g. the ASiC-S signature
container and the “Trust Ok”-Token. For this reason, the solution using this library needs to have
access to the connector certificate of the national e-CODEX connector and the respective keystore.

5.1.5.5 Proxy Configuration

The Java library needs to be able to contact TSLs and CAs. For this reason, the library will have to
send and receive http- and https messages. As a national solution might use a proxy server, it is
necessary to configure a proxy within the class.

5.1.5.6 Logging

As recording system events might become necessary for several participants, the Java library that will
be provided by e-CODEX will create several logging messages for important processes, e.g.:

 Sending of data and requests to the internet (e.g. contacting a TSL, certification authority)

 Receiving data from the internet (e.g. receiving data about a TSL, certification authority)

 Creation of the signature container

 Signature validation on the signature container

 …

To create these logging messages, e-CODEX will rely on the “free to use” library “log4j”5. Every MS is
free to create and configure a “log4j”-logger within the connector to log these messages.

5 http://logging.apache.org/log4j/

65

5.2 Signature verification

Signature verification can be separated in three topics. One of them is the verification of the business
document at the sending Service Provider. This verification is necessary to make the creation of the
“Trust Ok”-Token possible as, in case of signed documents, the token is meant to provide
information about the signature’s validity to the end user. The second topic is the verification at a
receiving Service Provider and will mainly be used for the verification of signatures on the ASiC-S
signature container. As last and most complicated topic, the cross-border verification of signatures
has to be kept in mind. This will be necessary for both the signature verification at cross-border
Service Providers (e.g. the e-Justice portal) and the revalidation of signed business documents that
have been received by an end user.

5.2.1 Verification at Sending Service Provider

The verification of a signature created at an eCM is under the responsibility of the respective eCM.
The outcome of this verification can be transformed to a validation report (See section 5.5). This
validation report can be transmitted to the e-CODEX Java library to be included in the “Trust Ok”-
Token.

In case of a cross-border Service Provider (e.g. the e-Justice portal), usage of DG MARKT DSS is
recommended to verify a signatures validity. As DSS creates a validation report as it is described in
section 5.5 and the current version of DSS will be a part of the Java library provided by e-CODEX,
there will not be a need to install additional packages. Nonetheless, every cross-border Service
Provider is free to decide which solution shall be used for cross-border signature verification.

5.2.2 Verification at Receiving Service Provider

As the verification of the signature on the business document has been done at the sending Service
Provider, the only signatures that need to be verified are the signatures on the ASiC-S signature
container and on both versions of the “Trust Ok”-Token. This verification will be done by the method
“check()” of the class “eu.ecodex.dss.service.impl.dss.DSSECodexContainerService” as it has been
described in section 5.1.4.1. The outcome of this verification will be a “CheckResult” object that can
be used to decide, whether the ASiC-S signature container can be trusted or not. In case of a trusted
ASiC-S signature container, the receiving Service Provider can decide to:

 Add its own signature to the signature container by calling the method
“addSignature(ECodexContainer container)” of the class
“eu.ecodex.dss.service.impl.dss.DSSECodexContainerService” and forward the whole signature
container to the end user.

 Unpackage the signature container by calling the method “getBusinessContent()” of the class
“eu.ecodex.dss.model.ECodexContainer” and forward the files. This solution is advised not to be
used as the link between the files and the “Trust Ok”-Token gets lost.

66

5.2.3 Cross-Border Verification

The cross-border verification of signatures will be necessary for the first validation, the revalidation
of signatures at cross-border Service Providers and the revalidation of signatures for received
documents at the receiving Service Provider. For this reason, the basic implementation of the
technical validation service relies on the classes of DG MARKT DSS for signature verification. If the
receiving eCM plans to allow cross-border signature revalidation at his national service provider,
either the e-CODEX library can be used to create a “Trust Ok”-Token on the receiving side or the DG
MARKT DSS libraries can be used to create a validation report.

5.3 Signature creation on business documents

The business document of a case is highly recommended to be signed by the user to make changes to
the document detectable and to create a trustworthy link between user and document. The
possibility to create this signature should be implemented at the Service Provider and should rely on
nationally accepted means.

In case of the European solution, the e-Justice portal, e-CODEX recommends the signature creation
to be realised by:

 Usage of DSS, provided by DG MARKT, as main solution.

 Providing a possibility to download, sign and upload the document. This solution should be
available for the signature solutions not being supported by DSS.

Nevertheless, the final decision about how to implement the necessary cross border signature
creation service is up to the e-Justice portal.

5.4 Signature creation on “Trust Ok”-Token

The “Trust Ok”-Token is necessarily signed to ensure:

 The token has been created by an authority that is allowed to create this kind of token, e.g. the
connector of a service provider.

 The token has not been altered during its transmission.

As the “Trust Ok”-Token will be created and signed at the connector of the Service Provider, it is
necessary to provide a certificate for the automated creation of electronic signatures at every
connector.

5.4.1 Signature on the PDF version

The signature on the PDF version of the “Trust Ok”-Token will be created at the connector and has to
be mandatory for further processing of the token.

A signature created by a connector shall be in accordance with the standard PAdES and has to be
realised with the profile PAdES-BES as a minimum.

67

5.4.2 Signature on the XML version

To be accessible in an easy way, the XML version of the “Trust Ok”-Token is planned to be
transported outside of the ASiC-S signature container. To prevent changes on the content of the XML
token, it is highly recommended to sign it at the connector of the sending Service Provider. For this
reason, an enveloped XAdES signature seems to be most suitable, at least in the profile BES as it is
described in XAdES. In addition, the signature should involve information about the PDF version of
the main document to provide a trustworthy link to the signed content. This is realised by adding the
file name and the respective hash value to the XML version of the “Trust Ok”-Token. The following
tables describe the structure of the described solution based on an example.

1)

2)

3)

4)

5)
6)

<?xml version="1.0" encoding="UTF-8" ?>
<TrustOkToken xmlns:ns2=”http://www.w3.org/2000/09/xmldsig#”>
 +<Issuer>

 <Document>
 <Filename>Business Document.pdf</Filename>
 <Type>PDF</Type>
 <ns2:DigestMethod Algorithm=”SHA-256” />
 <ns2:DigestValue>XmSlDfuCVAd2Dc4Das=</ns2:DigestValue>
 </Document>

 +<Validation>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 Id="sigId-ideebe4db20c4c19460298dda2410e3665">

 +<ds:SignedInfo>

 <ds:SignatureValue
 Id="value-ideebe4db20c4c19460298dda2410e3665">
 Signature
 </ds:SignatureValue>

 +<ds:KeyInfo>
 +<ds:Object >

 </ds:Signature>
</TrustOkToken>

Table 3: Basic View on a XAdES Signature

1. Document
Information about the business document the XML “Trust Ok”-Token refers to.

2. ds:Signature
This is the root element of the XAdES signature as it is described in XAdES.

3. ds:SignedInfo
The element “ds:SignedInfo” contains information about the signed content and is described
in section 4.3 of the XMLDSig specification. This element will be described closer in Table 4 as
this is an important element to understand, what has to be signed.

68

4. ds:SignatureValue
This element contains the actual value of the digital signature and is specified in section 4.2
of XMLDSig.

5. ds:KeyInfo
The element “ds:KeyInfo” shall contain the signatories certificate to allow the verification of
the signature and is described in section 4.4 of XMLDSig. In the case of e-CODEX, this will be
the certificate of the sending Service Provider’s Connector.

6. ds:Object
The element “ds:Object” contains all additional information about the signature that has to
be in place to be in accordance with XAdES.

1)

2)

<ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n#" />
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

 <ds:Reference
 Id=”xml_ref_id” URI="">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" />
 <ds:Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116 ">
 <ds:XPath>not(ancestor-or-self::ds:Signature)</ds:XPath>
 </ds:Transform>
 </ds:Transforms>

 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <ds:DigestValue>6K87kQqCq4FrssZcP0mggA/y3yc=</ds:DigestValue>
 </ds:Reference>

 <ds:Reference
 Type="http://uri.etsi.org/01903#SignedProperties"
 URI="#xades-ideebe4db20c4c19460298dda2410e3665">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <ds:DigestValue>GhlbctrqHPEzb42l7RNAomXsEU4=</ds:DigestValue>
 </ds:Reference>
</ds:SignedInfo>

Table 4: Detailed View on the Element "ds:SignedInfo"

69

1. ds:Reference Id=”xml_ref_id” URI=””
This part of the signature contains the digest of the XML version of the “Trust Ok”-Token. The
URI refers to the ID of the signed content (compare to the element “Object” in Table 3)

2. ds:Reference URI=”#xades-ideebe4db20c4c19460298dda2410e3665”
This reference contains the part of the signature, that contains the additional XAdES
information. The reference has to be in place to be in accordance with [XAdES]
(section 4.4.1).

70

5.5 Validation Report

The validation report contains all validation data that can be collected within the process of signature
validation. In case of e-CODEX, this leads to two scenarios:

 Signature validation with nationally accepted solutions

If the signature validation is done by the nationally accepted solution, e.g. at the sending Service
Provider to create a report for the “Trust Ok”-Token, the report will follow the nationally
accepted standards.

 Signature validation with cross-border solutions

In case of the e-Justice portal as a sending participant of e-CODEX and the revalidation of a
signature by means of the e-CODEX signature validation mechanism, the signature validation will
be realised by DG MARKT DSS. For this reason, the result of a signature validation will be a report
as it has been defined within the documentation of this solution6.

There will be no standardised validation report as the content of the report is mostly under the
control of each member state. From a legal point of view, e-CODEX is not allowed either to add
information to these reports or to remove information. The only mandatory requirement to the
report is that is has to be transmitted as XML.

6 See A Appendix: Validation report structure

71

5.6 “Trust Ok”-Token

As already stated in section 2.2.1, the idea behind the “Trust OK”-Token is to provide the possibility
for the receiving party (e.g. a judge) to recognise documents filed using trustworthy advanced
electronic systems based on signature or authentication.

By using the token in accordance to the “Circle of Trust”, the receiving party does not need to
validate the documents, applied signatures and used certificates itself and can rely solely on the
token. By doing so, it is no longer necessary to validate signatures and certificates cross-border and
deal with the different national standards and implementations.

The “Trust-OK”-Token will be a PDF-File generated by the sending Connector to provide a human
readable document. It will be easy to understand with the aim to aid the receiving party in the
signature verification process.

Additionally, a machine readable form will be generated to support future developments.

5.6.1 Content

To fulfil the requirement, that the “Trust OK”-Token should be easy to understand, the token itself
will be divided into three parts:

 The first part consists of basic information necessary for the receiving party to recognise
documents as trustworthy which includes information on the advanced electronic system and an
evaluation of the legal trust level. The legal trust level is stated either as "successful" or
"unsuccessful".

 The second part gives a technical assessment of the documents signature (signature-based
advanced electronic system) or the authentication information (authentication-based advanced
electronic system). This assessment consists of a standardised summary of the original validation
data and a technical trust level based on this summary.

 The third part will be made of the original validation report provided by either the national
solution itself or by the DSS validation tool.

The “Trust OK”-Token will contain:

 Information on the used advanced electronic system

 Information on the time the documents have been filed

 Basic Information on applied signatures and used certificates or the identity of the user

 Evaluation of the technical trust level (red / yellow / green)

 Evaluation of the legal trust level (red / green)

 Original validation report provided by the national solution or the DSS validation tool

72

5.6.2 Structure

5.6.2.1 Human Readable Token (PDF)

As mentioned in 5.6.1, the human readable token will consist of three parts.

The first part will be presented on the first page of the actual token. It includes general information
on the advanced electronic system and a legal assessment of the business document. In addition, a
national disclaimer and a “validation stamp” in the colour of the legal validation result (green/red)
are shown in the bottom of the page.

Figure 21: Exemplary
first page

General Information

 Issuing Country
The country the “Trust Ok”-
Token has been created in

Advanced Electronic
System

Information about what kind of
Advanced Electronic System
has been used to create this
token (authentication- or
signature based)

Document
Information

Name and Mimetype of the file
the token refers to

 Time of Issuance
Time the token has been
created

Legal Result

Evaluation of the
Document

Final result of the legal
assessment of the business
document

Table 5 Description "Trust Ok"-Token page 1

73

The second page provides a standardised, technical overview of information the original validation
report gives. Depending on the Advanced Electronic System (authentication- or signature-based), the
information given by the technical overview varies.

Similar to the first page, the bottom of this page consists of a stamp in the colour of the documents
technical validation result (green/yellow/red) and a describing text, e.g. providing information about
why a document received a yellow technical assessment.

74

Figure 22: Exemplary second page for a signature-
based advanced electronic system

General Information

 Issuing Country
The country the “Trust Ok”-Token
has been created in

Advanced
Electronic System

Information about what kind of
Advanced Electronic System has
been used to create this token
(authentication- or signature
based)

Document
Information

Name and Mimetype of the file the
token refers to

 Verification Time
Time the signature has been
validated

Signature Information

 Signing Time
Time the signature has been
created

Signature
Verification

Result of the signatures
mathematical verification

 Signature Level
Assessment of the signature level,
e.g. Qualified, Advanced or
Unknown

Certificate Information

 Issuer Issuer of the certificate

Certificate
Verification

Information about whether it was
possible to verify the validity of the
certificate at an OCSP or an CRL

Validity at Signing
Time

Information about whether the
certificate was valid at the time the
signature has been created

Technical Result

Validation of the
Document

Assessment of the documents
validity

Table 6 Description "Trust Ok"-Token Assessment of a signature

75

Table 7 Description "Trust Ok"-Token Assessment of an authentication

Figure 23: Exemplary second page for a
authentication-based advanced electronic system

General Information

 Issuing Country
The country the “Trust Ok”-
Token has been created in

Advanced Electronic
System

Information about what kind of
Advanced Electronic System
has been used to create this
token (authentication- or
signature based)

Document
Information

Name and Mimetype of the file
the token refers to

 Verification Time
Time the signature has been
validated

Authentication
Information

 Identity Provider
Name of the Identity Provider
the user has been
authenticated at

 Username Synonym
Username or synonym of the
user

Time of
Authentication

The time the user has been
authenticated at the identity
provider

Technical Result

Validation of the
Document

Assessment of the documents
validity

76

The third part of the document consists of the original validation report as it has been created by the
issuing member states’ validation software.

Figure 24: Exemplary first page of a national validation report

77

5.6.2.2 Machine Readable Token (XML)

This chapter provides the XML schema that defines the structure of the XML version of the “Trust
Ok”-Token.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

<xsd:import namespace="http://www.w3.org/2000/09/xmldsig#"
 schemaLocation="http://www.w3.org/2000/09/xmldsig#" />

<xsd:element name="TrustOkToken" type="TokenType" />

<xsd:simpleType name="AdvancedSystemEnum">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Signature-based"/>
 <xsd:enumeration value="Authentication-based"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="TechnicalTrustLevelEnum">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="FAIL"/>
 <xsd:enumeration value="SUFFICIENT"/>
 <xsd:enumeration value="SUCCESSFUL"/>
 </xsd:restriction>
 </xsd:simpleType>

<xsd:simpleType name="LegalTrustLevelEnum">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SUCCESSFUL"/>
 <xsd:enumeration value="NOT_SUCCESSFUL"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="IssuerType">
 <xsd:sequence>
 <xsd:element name="ServiceProvider" type="xsd:string"/>
 <xsd:element name="Country" type="xsd:string"/>
 <xsd:element name="AdvancedElectronicSystem" type="AdvancedSystemEnum"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="DocumentType">
 <xsd:sequence>
 <xsd:element name="Filename" type="xsd:string"/>
 <xsd:element name="Type" type="xsd:string"/>
 <xsd:element ref="ds:DigestMethod" />
 <xsd:element ref="ds:DigestValue" />
 <xsd:element name="SignatureFilename" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

78

<xsd:complexType name="SignatureInformationType">
 <xsd:sequence>
 <xsd:element name="SignatureVerification" type="xsd:boolean"/>
 <xsd:element name="StructureVerification" type="xsd:boolean"/>
 <xsd:element name="SignatureFormat" type="xsd:string" minOccurs="0"/>
 <xsd:element name="SignatureLevel" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="CertificateInformationType">
 <xsd:sequence>
 <xsd:element name="Issuer" type="xsd:string" minOccurs="0" />
 <xsd:element name="CertificateVerification" type="xsd:boolean" />
 <xsd:element name="ValidityAtSigningTime" type="xsd:boolean" />
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="AuthenticationInformationType">
 <xsd:sequence>
 <xsd:element name="IdentityProvider" type="xsd:string"/>
 <xsd:element name="UsernameSynonym" type="xsd:string"/>
 <xsd:element name="TimeOfAuthentication" type="xsd:dateTime"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="SignatureDataType">
 <xsd:sequence minOccurs=”0”>
 <xsd:element name="SigningTime" type="xsd:dateTime" minOccurs="0"/>
 <xsd:element name="SignatureInformation" type="SignatureInformationType"/>
 <xsd:element name="CertificateInformation" type="CertificateInformationType"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="VerificationDataType">
 <xsd:choice>
 <xsd:element name="SignatureData" type="SignatureDataType"/>
 <xsd:element name="AuthenticationData" type="AuthenticationInformationType"/>
 </xsd:choice>
</xsd:complexType>

<xsd:complexType name="TechnicalResultType">
 <xsd:sequence>
 <xsd:element name="TrustLevel" type="TechnicalTrustLevelEnum"/>
 <xsd:element name="Comments" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="LegalResultType">
 <xsd:sequence>
 <xsd:element name="TrustLevel" type="LegalTrustLevelEnum"/>
 <xsd:element name="Disclaimer" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

79

<xsd:complexType name="SourceType">
 <xsd:sequence>
 <xsd:any minOccurs="0" namespace="##any" maxOccurs="unbounded" processContents="lax"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ValidationType">
 <xsd:sequence>
 <xsd:element name="VerificationTime" type="xsd:dateTime"/>
 <xsd:element name="VerificationData" type="VerificationDataType"/>
 <xsd:element name="TechnicalResult" type="TechnicalResultType"/>
 <xsd:element name="LegalResult" type="LegalResultType"/>
 <xsd:element name="OriginalValidationReport" type="SourceType"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="TokenType">
 <xsd:sequence>
 <xsd:element name="Issuer" type="IssuerType"/>
 <xsd:element name="Document" type="DocumentType"/>
 <xsd:element name="Validation" type="ValidationType"/>
 <xsd:element ref="ds:Signature" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

</xsd:schema>

80

5.6.3 Link to the Validated Documents

To create a secure link between “Trust Ok”-token and transmitted documents, the standard ASiC-S is
applicable for e-CODEX needs. This standard has the positive side effect, that neither transmitted
documents, be they signed or not, nor the token can be altered as all documents are secured by the
signature of the ASiC-S container.

5.6.3.1 Description

The ASiC-S format provides the possibility to create a signature container for a single file with an
undefined number of signatures. To make this solution suitable for e-CODEX needs, it is possible to
create a ZIP file containing all files that have to be transported. Afterwards, this ZIP file can be signed
by both the sending and the receiving gateway.

Figure 25: Example for ASiC-S structure applied to a nested container file7

7 Source: http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.01.01_60/ts_102918v010101p.pdf

81

5.6.3.2 Technical Specification – ASiC-S Signature Container

As described before, all files that are meant to be signed and transported by the ASiC-S signature
container need to be packaged in a single ZIP archive with the following recommendations:

Name: Signed_Content.zip

Format: ZIP archive

Content: 1 Main Document (Allowed Formats: PDF)

 0 – 1 Detached Signature

 1 “Trust Ok”-Token (Allowed Format: PDF)

 0 – X Attachments (Format restriction: No executable files)

Table 8: Specification of the content archive

If the Service Provider discovers the usage of a detached signature on an attachment, it should be
possible to package the signed file and the respective signature within an additional ZIP archive.

The next step in the creation of the ASiC-S signature container will be the creation and preparation of
the container itself. Within this process, several rules have to be followed:

 The basis for the ASiC-S signature container should be a ZIP based container.

 The first file within the ASiC-S signature container has to be the file “mimetype”.

o The content of the file has to be “application/vnd.etsi.asic-s+zip”.

 The folder “META-INF” has to be in place.

o The folder “META-INF” has to contain the file “signatures.xml”.

 The name of the ASiC-S signature container should be “e-CODEX_Signature_Container”.

 To follow the standard, the file extension for transportation should be “.zip.asics”. This could be
changed to “.zip” at the receiving Service Provider to make it more user friendly to the end user.

 The file “Signed_Content.zip” has to be on the root level of the container.

 No additional files or folders are allowed. Neither on the root level of the ASiC-S container nor in
the folder “META-INF”.

Figure 26: Example for a valid signature container

82

5.6.3.3 Technical Specification – signatures.xml8

The file “signatures.xml” has to be in accordance with the rules described in [ASiC-S]. Within Annex 3
of the ASiC specification, the following namespace declarations apply for the XML Schema
definitions:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 targetNamespace="http://uri.etsi.org/02918/v1.1.1#"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns="http://uri.etsi.org/02918/v1.1.1#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
<xsd:import
 namespace="http://www.w3.org/2000/09/xmldsig#"
 schemaLocation="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd"/>

The XML Schema itself is described in Annex 5 of the ASiC specification, whereby the element
<XAdESSignatures> is meant to be the root element of the XML:

<xsd:complexType name="XAdESSignaturesType">
 <xsd:sequence>
 <xsd:element ref="ds:Signature" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:element name="XAdESSignatures" type="XAdESSignaturesType">
 <xsd:annotation>
 <xsd:documentation>Schema for parallel detached XAdES Signatures </xsd:documentation>
 </xsd:annotation>
</xsd:element>

8 Sources: TS 102918 v1.1.1 (ASiC), TS 103174 v1.2.1 (ASiC) and TS 101903 v1.3.2 (XAdES)

83

5.6.4 Transmission of the token

The signature container described in section 5.6 can be attached to the XML version of the main
document creating the structure described in “Figure 27: Signature container within the e-CODEX
transport infrastructure”. This structure can easily be transmitted via the transport infrastructure
provided by WP5.

Figure 27: Signature container within the e-CODEX transport infrastructure

84

I. References

ASiC-S

TS 102918 v1.1.1

http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.01.01_60/
ts_102918v010101p.pdf

ASiC-S

TS 103174 v1.2.1

http://www.etsi.org/deliver/etsi_ts/103100_103199/103174/01.02.01_60/
ts_103174v010201p.pdf

XAdES

TS 101903 v1.3.2

http://uri.etsi.org/01903/v1.3.2/ts_101903v010302p.pdf

PAdES

TS 103172 v1.1.1

http://www.etsi.org/deliver/etsi_ts/103100_103199/103172/01.01.01_60/
ts_103172v010101p.pdf

TSL

TS 102 231 v3.1.2

http://www.etsi.org/deliver/etsi_ts/102200_102299/102231/03.01.02_60/
ts_102231v030102p.pdf

RFC 4519 http://www.rfc-editor.org/rfc/rfc4519.txt

XMLDSig http://www.w3.org/TR/xmldsig-core/

http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.01.01_60/%0bts_102918v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.01.01_60/%0bts_102918v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/103100_103199/103174/01.02.01_60/%0bts_103174v010201p.pdf
http://www.etsi.org/deliver/etsi_ts/103100_103199/103174/01.02.01_60/%0bts_103174v010201p.pdf
http://uri.etsi.org/01903/v1.3.2/ts_101903v010302p.pdf
http://www.etsi.org/deliver/etsi_ts/103100_103199/103172/01.01.01_60/
http://www.etsi.org/deliver/etsi_ts/103100_103199/103172/01.01.01_60/

85

A. Appendix: Validation report structure9

1 Introduction

This section describes the fields provided in the validation report. The content of these fields are
recovered from the verification performed during the validation algorithm.

1.1 Used type

To facilitate the readability of the validation report structure, the following information type has
been used along the description.

Result type

The “Result type” is used to indicate the success or the failure of individual verification steps. It is
defined as follows:

 Result: indicates whether the result of the verification step is:

o Valid;
o Invalid;
o Undetermined;

 Description: provides additional information about the result of the verification step. In
particular it provides explanation in case of invalid or undetermined result.

Revocation verification type

The “Revocation verification type” is used to indicate the success or the failure of the verification of
revocation data. It is defined as follows:

 Status: contains the status of the certificate, specifies if the certificate is revoked or not;

 Revocation date: if the certificate is revoked, this element contains the date and time of
revocation;

 Issuer: if the certificate is revoked, specifies the name of the issuer of the revocation data;

 Issuing time: if the certificate is revoked, specifies the date and time at which the revocation
data has been issued.

Time stamp verification type

The “Time stamp verification type” is used to indicate the success or the failure of the verification of
a time stamp. It is defined as follows:

 Format (Result type): indicates whether the format of the time stamp is ok or not;

9 This chapter (A Appendix: Validation report structure) is taken from “DSS-DM-Design Model-
v1.00.doc” by DG MARKT. The complete documentation is available for download under
https://joinup.ec.europa.eu/software/sd-dss/release/all.

https://joinup.ec.europa.eu/software/sd-dss/release/all

86

 Time stamp content: contains the content of the time stamp:

o Serial number;
o Creation time;
o Issuer name;

 Signature verification: contains information about the validity of the signature of the time
stamp:

o Signature verification (Result type): specifies if the signature is mathematically correct or not;
o Signature algorithm: provides the name of the algorithm applied for the signature.

 Certificates path verification (Result type): indicates whether the certificate path of the time
stamp has been verified up to a trusted list.

87

2 Validation report

The validation report will contain the results of the analysis steps performed during the overall
process of signature validation. Its content will be used to evaluate the trustability of a document.

The validation report itself will be generated by the DSS tool and will contain the following
information.

2.1 Time information

Verification time

Specifies the date and time in which the validation has been launched.

2.2 Signature information

For each signature, the verification algorithm provides the following information in the validation
report.

Signature structure verification (Result type)

Specifies if the structure of the signature is syntactically correct or not, according to the signature
format (CAdES, XAdES or PAdES).

Signature verification

Contains information about the validity of the signature.

 Signature verification (Result type): specifies if the signature is mathematically correct or not;

 Signature algorithm: provides the name of the algorithm applied for the signature.

2.2.1 Certification path and revocation data analysis

Summary (Result type)

Contains the result of the certification path validation.

Certificate verification

For every certificate from the certification path, the following information is provided:

 Issuer name: specifies the name of the certificate’s issuer;

 Serial number: specifies the serial number of the certificate;

 Subject: specifies the distinguished name of the certificate;

 Validity period verification at signing time (Result type): specifies whether or not the signing
time fits with the validity period of the certificate;

 Signature verification: contains information about the validity of the signature:

o Signature verification (Result type): specifies if the signature is mathematically correct or not;
o Signature algorithm: provides the name of the algorithm applied for the signature.

 Certificate status (Revocation verification type): contains information about the result of the
certificate revocation verification.

88

Trusted list information

 Service was found: specifies if a corresponding service has been found in a trusted list during the
validation algorithm;

 Trusted List well signed: specifies if the corresponding Trusted List was well signed (a signature
is present and the signing certificate was referenced in the LOTL).

 TSP information: if a service has been found, provides the information about the provider of the
corresponding service:

o Name: specifies the name of the service provider, extracted from the trusted list;
o Trade name: specifies the trade name of the service provider, extracted from the trusted list;
o Postal address: specifies the postal address of the service provider, extracted from the trusted list;
o Electronic address: specifies the electronic address of the service provider, extracted from the trusted

list;

 Service information: if a service has been found, provides the information about this service:

o Service type identifier: specifies the service type identifier of the corresponding service, extracted
from the trusted list;

o Name: specifies the name of the corresponding service, extracted from the trusted list;
o Status information: contains the information about the status of the service:

 Current status: specifies the current status of the corresponding service, extracted from the
trusted list;

 Current status starting date: specifies the current status starting date of the corresponding
service, extracted from the trusted list;

 Status at reference time: specifies the status of the service at the reference time of the validation
algorithm, extracted from the trusted list;

 Status starting date at reference time: specifies the status starting date of the corresponding
service at the reference time of the validation algorithm, extracted from the trusted list;

o Additional service information: if present this element contains:
 Additional information URI: specifies the URI identifying the additional information, extracted

from the trusted list;
 Classification: if present, this element contains the service information classification, extracted

from the trusted list.
o Qualification: if present, specifies the qualifier properties related to the certificate, extracted from the

trusted list.

 Taken over by information: if present, contains the information about the service provider
which has the new responsibility of the service:

o Information URI: specifies the URI pointing towards a descriptive text to inform about which entity is
currently responsible for the service, extracted from the trusted list;

o TSP name: specifies the name of the currently responsible service provider, extracted from the trusted
list;

o Scheme operator name: specifies the name of the Member State’s body in charge of the
corresponding trusted list, extracted from the trusted list;

o Scheme territory: specifies the country in which the scheme is established, extracted from the trusted
list.

89

2.2.2 Signature level analysis

Signature format

Specifies the format of the signature:

 XAdES;

 CAdES;

 PAdES.

BES level

Contains the information related to the BES level of a signature:

 BES level verification (Result type): specifies whether the signature has reached the BES level or
not;

 Certificates: contains the list of X509 certificates;

 Signing certificate (Result type): specifies if the “signing certificate” field references the signing
certificate value contained in the signature;

 Signing time: Provides information about the signing time of the document.

 Mime type: specifies the data format of the signed document;

 Location: if present, contains information about the place where the signature was generated;

 Signer role: if present, specifies the claimed role of the signer;

 Commitment type indication: if present, contains an indication of the type of commitment
implied by the signature;

 Counter signature: if present, contains the result of the verification of a counter signature:

o Signature verification (Result type): specifies if the signature is mathematically correct or not;
o Signature algorithm: provides the name of the algorithm applied for the signature.

EPES Level

Contains, if present, the information related to the EPES level of a signature:

 EPES level verification (Result type): specifies whether the signature has reached the EPES level
or not;

 Signature policy identifier: specifies the policy under which the signature has been produced.

T Level

Contains, if present, the information related to the T level of a signature:

 T level verification (Result type): specifies whether the signature has reached the T level or not;

 Signature time stamp (Time stamp verification type): specifies the result of the verification of
the signature time stamp.

90

C Level10

Contains, if present, the information related to the C level of a signature:

 C level verification (Result type): specifies whether the signature has reached the C level or not;

 Certificate references verification (Result type): Specifies whether the present certificate
references match the certificates from the certification path or not;

 Revocation references verification (Result type): Specifies whether the present revocation
references match the revocation data from the certification path or not.

X Level

Contains, if present, the information related to the X level of a signature:

 X level verification (Result type): specifies whether the signature has reached the X level or not;

 Signature and references time stamp (Time stamp verification type): for each time stamp,
specifies the result of the verification of the signature and references time stamp;

 References time stamp (Time stamp verification type): for each time stamp, specifies the result
of the verification of the references time stamp.

X-L Level11

Contains, if present, the information related to the X level of a signature:

 X-L level verification (Result type): specifies whether the signature has reached the X-L level or
not;

 Certificate values verification (Result type): specifies whether or not the present certificate
values match the certificate references present in the C Level;

 Revocation values verification (Result type): specifies whether or not the present revocation
values match the revocation references present in the C Level.

A Level

Contains, if present, the information related to the A level of a signature:

 A level verification (Result type): specifies whether the signature has reached the A level or not;

 Archive time stamp verification (Time stamp verification type): specifies the result of the
verification of the archive time stamp.

10 The certificate and revocation references are not displayed in this section of the report as they have
already been displayed in the certification path and revocation data analysis.

11 The certificate and revocation values are not displayed in this section of the report as they have
already been displayed in the certification path and revocation data analysis.

91

LTV Level

Contains, if present, the information related to the LTV level of a signature:

 LTV level verification (Result type): specifies whether the signature has reached the LTV level or
not;

 Document security store verification:

o Certificate references verification (Result type): specifies whether the certificate references present in
the security store match the certificates of the certification path or not;

o Revocation references verification (Result type): specifies whether the revocation references present
in the security store match the revocation data of the certification path or not;

o Revocation values verification (Result type): specifies whether the revocation values present in the
security store match the revocation data of the certification path or not.

 Document time stamp verification (Time stamp verification type): specifies the result of the
verification of the archive time stamp.

2.2.3 Qualification extension analysis

Qualifications verification

If the qualification elements are present, this section contains the qualification information:

 QCWithSSCD:

o Match criteria (Result type): specifies whether the matching criteria for QCWithSSCD are reached by
the signing certificate or not.

 QCNoSSCD:

o Match criteria (Result type): specifies whether the matching criteria for QCNoSSCD are reached by the
signing certificate or not.

 QCSSCDStatusAsInCert:

o Match criteria (Result type): specifies whether the matching criteria for QCSSCDStatusAsInCert are
reached by the signing certificate or not.

 QCForLegalPerson:

o Match criteria (Result type): specifies whether the matching criteria for QCForLegalPerson are reached
by the signing certificate or not.

2.2.4 Certificate content analysis

QC statement verification

Contains the result of the QC statement verification:

 QCP presence: specifies if the ETSI defined QCP OID is present;

 QCP+ presence: specifies if the ETSI defined QCP+ OID is present;

 QcCompliance presence: specifies if the QcCompliance statement is present;

 QcSSCD presence: specifies if the QcSSCD statement is present.

92

2.2.5 Final conclusion

Signature qualification

Specifies one of the following properties:

 The signature is QES;

 The signature is AdESQC;

 The signature is AdES.

