

Deliverable 5.4 Developed Modules V1.0 1 of 81

Submitted to the EC on 26/02/2013

COMPETITIVENESS AND INNOVATION FRAMEWORK PROGRAMME

ICT Policy Support Programme (ICT PSP)

e-CODEX

e-Justice Communication via Online Data Exchange

ICT PSP call identifier: CIP-ICT-PSP-2009-4

ICT PSP main Theme identifier: CIP ICT PSP 2010 5.2 3: E-JUSTICE SERVICES

Project full title: e-Justice Communication via Online Data Exchange

Grant agreement n°: 270968

 Deliverable 5.4 Developed Modules
Deliverable ID: D5.4

Deliverable Name : Concept of Implementation

Status :draft V1.0

Dissemination Level : e-CODEX consortium

Due date of deliverable : 30.11.2012

Actual submission date : 26.02.2013

Work Package : e-CODEX WP5

Organisation name of lead partner for this
deliverable :

Bundesministerium für Justiz, Ministerio de la Justicia

Author(s): AT,DE and ES

Partner(s) contributing : AT,DE and ES

The main goal of this document is to give an overview about the two main deliverables of WP5,
which are the Gateway and the Generic Connector Framework. It describes shortly the structure of
this deliverables and the dependencies to other deliverable.

Deliverable 5.4 Developed Modules V1.0 2 of 81

Table of Contents
LIST OF ABBREVIATIONS ... 7

EXECUTIVE SUMMARY .. 11

1. INTRODUCTION .. 12

1.1. SCOPE AND OBJECTIVE OF DELIVERABLE ... 12

1.2. WP5 GENERAL OBJECTIVES AND VISION .. 12

1.3. RELATIONS TO INTERNAL E-CODEX ENVIRONMENT ... 12

1.4. RELATIONS TO EXTERNAL E-CODEX ENVIRONMENT .. 13

1.5. QUALITY MANAGEMENT ... 13

1.6. RISK MANAGEMENT ... 13

1.7. STRUCTURE OF THE DOCUMENT ... 13

2. SOFTWARE MODULE GATEWAY .. 15

2.1. OVERVIEW AND FUNCTIONALITY ... 15

2.2. COMPONENT STRUCTURE .. 15

2.2.1. EBMS MODULE ... 16

2.2.2. RELIABILITY MODULE .. 19

2.2.3. SECURITY MODULE ... 20

2.2.4. LOGGING .. 20

2.2.4.1. Scope and Objective of the Module .. 20

2.2.4.1.1. Event Logging ... 22

2.2.4.1.2. Message Logging .. 22

2.2.4.2. Configuration ... 23

2.2.4.3. Function call... 25

2.2.5. BACKEND WEB SERVICE .. 26

2.2.5.1. Subsystem Definition. .. 26

2.2.5.1.1. Subsystem Description ... 26

2.2.5.1.2. Subsystem Scope. ... 26

2.2.5.1.3. Technological Environment Description .. 27

2.2.5.1.4. Principal Users Identification ... 27

2.2.5.2. Logical Model... 27

2.2.5.2.1. SendMessage .. 28

2.2.5.2.2. SendMessageWithReference ... 29

2.2.5.2.3. DownloadMessage ... 30

2.2.5.2.1. listPendingsMessages ... 31

2.2.5.3. Use Case Analysis .. 31

2.2.5.4. Error Codes .. 32

2.2.6. P-MODES CONFIGURATION ... 32

Deliverable 5.4 Developed Modules V1.0 3 of 81

2.2.7. DB SCHEMAS .. 36

3. SW MODULE GENERIC CONNECTOR FRAMEWORK .. 72

3.1. WORKFLOW .. 72

3.1.1. CONFIGURATION .. 76

3.2. COMPONENT STRUCTURE .. 78

3.2.1. ECODEXCONNECTORCOMMON .. 78

3.2.2. ECODEXCONNECTORNATIONALBACKENDCLIENT ... 78

3.2.3. ECODEXCONNECTOREVIDENCESTOOLKIT ... 80

3.2.4. ECODEXCONNECTORSECURITYTOOLKIT ... 80

3.2.5. ECODEXCONNECTORCONTENTMAPPER ... 80

3.2.6. ECODEXCONNECTORCONTROLLER .. 81

3.2.7. ECODEXCONNECTORGATEWAYWEBSERVICECLIENT ... 81

Deliverable 5.4 Developed Modules V1.0 4 of 81

List of Figures
Figure 1. Component Structure ... 15

Figure 2. Internal Structure of Holodeck ... 16

Figure 3 e-CODEX Holodeck gateway modules ... 21

Figure 4 – Appender configuration ... 24

Figure 5 – Logger configuration ... 24

Figure 6 – Logger declaration .. 25

Figure 7 – Logger call ... 25

Figure 8 WSDL Diagram ... 26

Figure 9 Send Message Diagram ... 28

Figure 10 Send Message with Reference Diagram .. 29

Figure 11 Download Message Diagram ... 30

Figure 12 List Pending Message Diagram .. 31

Figure 13 Use Cases Backend Web Service ... 32

Figure 14 DB Schema Gateway.. 70

Figure 15 Incoming Workflow ... 73

Figure 16 Outgoing Workflow ... 75

Figure 17 e-CODEX Connector Structure ... 78

Deliverable 5.4 Developed Modules V1.0 5 of 81

List of Tables
Table 1 History ... 6

Table 2 Risks .. 13

Table 3 Document Structure .. 14

Table 4 – Standard Apache Log4j log level .. 22

Table 5 – e-CODEX specific Message log level .. 23

Table 6 – Message log level fields ... 23

Table 7 – e-CODEX Gateway Log4j logging configuration ... 23

Deliverable 5.4 Developed Modules V1.0 6 of 81

History
Version Date Changes made Modified by

0.1 09.10.2012 Template for directory structure AT

0.2 01.12.2012 Insert Description of SW module Gateway ES

0.5 20.12.2012 Insert Description of SW module generic
connector framework and compilation for
first review

AT

0.6 05.02.2013 Modifications to the whole document
because the quality review made by the
Auditing Service

ES

1.0 26.02.2013 V 1.0 released

Table 1 History

Deliverable 5.4 Developed Modules V1.0 7 of 81

List of Abbreviations

Acronym Explanation

ACL Access Control List

ADM Architecture Development Method

AICPA The American Institute of Certified Public Accountants (AICPA)
API Application programming interface
APDU Application Protocol Data Unit

AS

Applicability Statement
AS11, AS22, AS33 and AS44 are a family of protocols specifying how to transport
data securely and reliably over the Internet.

AT Austria
BC Business Collaboration,
BD Business Document
BE Belgium
BT Business Transaction
BusDox Business Document Exchange Network (PEPPOL)
CA Certification Authority
CAdES CMS Advanced Electronic Signatures, published by ETSI as TS 101 733
CBPKI Cross-border Public Key Infrastructure (Estonia)
CISA Certified Information Systems Auditor

CMS Cryptographic Message Syntax, see “CAdES”-Description

COM Commission
C-PEPS Citizen Country PEPS Request Invocation Method

CRL
Certificate Revocation List, see “RFC 5280”;
http://www.ietf.org/rfc/rfc5280.txt

CROBIES Cross-Border Interoperability of eSignatures

CZ CzechRepublic

D.I.M
Distributed Identity Management; Technical framework for dealing with identities
in the context of web service

DA Delivery Agent
DAC Discretionary Access Control
DB Data Base
DE Germany
DES Data Encryption Standard
DERBY (Apache
Derby)

Is an open source relational database implemented entirely in Java
(http://db.apache.org/derby) that comes with the Holodeck package

DGP Delivery Gateway Protocol
DGJUST Directorate General for Justice
DNIe Documento Nacional de Identidade Electrónico (National ID card / Spain)
DPC Data Protection and Confidentiality
Driver Software allowing computer programs to interact with a hardware device

1AS1 specification, RFC 3335, http://www.ietf.org/rfc/rfc3335.txt

2 AS2 specification, RFC 4130, http://www.ietf.org/rfc/rfc4130.txt

3AS3 specification, RFC 4823, http://tools.ietf.org/html/rfc4823

4AS4 conformance profile,

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/csprd03/AS4-profile-v1.0-
csprd03.odt

http://en.wikipedia.org/wiki/Internet
http://www.ietf.org/rfc/rfc5280.txt
http://db.apache.org/derby

Deliverable 5.4 Developed Modules V1.0 8 of 81

DSP Delivery Service Provider
DSS Digital signature Standard (NIST)
E2EE End-to-End Encryption
ebBP ebXML Business Process, part of ebXML stack
ebMS ebXML Messaging Services

ebXML
Electronic Business using eXtensible Markup Language, commonly known as e-
business XML

EC European Commission
ECC Elliptic curve cryptography (NIST)
eCM e-CODEX member
e-CODEX e-Justice Communication via Online Data Exchange
ED-GW Electronic Delivery Gateway
EDI VAN EDI5: Electronic Data Interchange, VAN: Value Added Network
EE Estonia
eID Electronic Identity
eIDM Electronic Identity Management
EIF European Interoperability Framework
EOPIC Equivalent of a personal identification code
EPO European Payment Order
ER Entity-Relationship. It’s an abstract way to describe a Data Base
ES Spain
ETSI European Telecommunications Standards Institute
EU European Union
FR France
GR Greece
GUI Graphical User Interface
GW Gateway

Holodeck
Is a free open-source software for b2b messaging, based on the Oasis
specifications for ebXML Messaging version 3 and AS4 profile (http://holodeck-
b2b.org)

HPC Health Professional Card
HU Hungary
ICT Information and Communications Technology
ID / eID Identity Document / electronic Identity Document

IDABC
Interoperable Delivery of European eGovernment Services to public
Administrations, Businesses and Citizens

IEEE Institute of Electrical and Electronic Engineers
IEEE 830 IEEE Software Requirements Specification
IOP Interoperability
ISSP Information System Security Policy
IT Italy
JHA Justice and Home Affairs Council
LDAP Lightweight Directory Access Protocol – RFC 4511
Log4J Logging library for Java, widely adopted (http://logging.apache.org/log4j/1.2)
LSP Large Scale Pilot
LTV Long Time Validity
MAC Mandatory Access Control

MEP
Message Exchange Pattern. It’s a definition of how two systems interchange
messages, one-direction, bidirectional, robust exchange,…

5EDI standards include: UN/EDIFACT, ANSI ASC X12, TRADACOMS, ODETTE

Deliverable 5.4 Developed Modules V1.0 9 of 81

MIME Multipurpose Internet Mail Extensions6
MS EU MemberState
MS-CAPI Cryptographic Application Programming Interface (Microsoft)
MT Malta

MSH

Message Service Handler (MSH) or message gateway that provides a
standardized, reliable, and secure infrastructure for enterprises to exchange
business documents. It is in compliance with the OASIS ebXML Message Service
(http://freebxml.org/msh.htm)

mTAN Mobile Transaction Authentication Number
MTOM Message Transmission Optimization Mechanism (SOAP)
MW Middleware
NCP National Contact Points
NIF National Interoperability Framework
NL The Netherlands

OCSP
Online Certificate Status Protocol, see “RFC 2560”
http://www.ietf.org/rfc/rfc2560.txt

OpenSC
Set of software tools and libraries to work with smart cards with cryptographic
capabilities
http://www.opensc-project.org

OS Operating System
PAdES PDF Advanced Electronic Signature, published by ETSI as TS 102 778
PDP Policy Decision Point
PEGS Pan-European e-Government Services
PEPPOL Pan-European Public Procurement Online (http://www.peppol.eu/)
PEPS Pan-European Proxy Services (STORK)

PERMIS
PrivilEge and Role Management Infrastructure Standards
http://www.openpermis.org

PET Privacy Enhancing Technologies
PIC Personal Identification Code
PKCS Public-key cryptography standards (PKCS #1 - PKCS #15)
PMI Permission Management Infrastructure
P-Mode Processing Mode
PT Portugal
PVP "Portalverbundprotokoll" (Austrian solution for connecting public authorities)
QAA Quality Authentication Assurance
QC Qualified Certificate
RBAC Role-Based Access Control
REM Registered E-mail (ETSI TS 102 640)

RFC 3161
RFC 3161 timestamp protocol (The RFC 3161 builds on the IETF standard
“Cryptographic Message Syntax”, published as the RFC 2630.)

RFC 3161 (GT)
Guardtime RFC 3161 timestamp (GuardTime timestamping protocol and
timestamp format are based on the IETF standard “Internet X.509 Public Key
Infrastructure Time-Stamp Protocol”, published as the RFC 3161.)

RO Romania
S.A.F.E. Secure Access to Federated e-Justice / e-Government (German eID Solution)
SAM card Secure Authentication Module card

6 MIME Part One: http://tools.ietf.org/html/rfc2045. Links to additional parts of the specification are given
therein.

http://www.ietf.org/rfc/rfc2560.txt

Deliverable 5.4 Developed Modules V1.0 10 of 81

SAML 2.0
Security Assertion Markup Language v2.0, authentication request and response
format
 (http://www.oasisopen.org/specs/index.php#saml)

SHA Secure Hash Algorithm (NIST)
SOAP Simple Object Access Protocol
SP Security Policy
S-PEPS Service Provider PEPS (STORK)
SP-MW Middleware Service Provider (STORK)
SPOCS Simple Procedures Online for Cross- Border Services (http://www.eu-spocs.eu/)
SSCD Secure Signature Creation Device
SSL V3+ Secure Sockets Layer v3
SSO Single Sign-On Profile
STORK Secure idenTity acrOss boRders linked (https://www.eID-stork.eu/)
TAN Transaction Authentication Number
Time Mark Timestamp alternative defined in XAdES specification
TLS Transport Layer Security

TLS 1.0+.
Transport Layer Security Version 1.0 + (RFC 2246,
http://tools.ietf.org/html/rfc5246)

TOGAF The Open Group Architecture Framework

Token
Physical device that an authorized user of computer services is given to ease
authentication.

TR Turkey

tScheme
tScheme is the independent, industry-led, self-regulatory scheme set up to create
strict assessment criteria, against which it will approve Trust Services.
(http://www.tscheme.org/)

TSL Trust-service Status List, published by ETSI as TS 102 231
TSP Trusted Service Provider
TTP Trusted Third Party
UC Use Case
UN/CEFACT United Nations Centre for Trade Facilitation and Electronic Business
VIdP Virtual Identity Providers

VIdP

Virtual IDP. A system component helping to abstract Pan-European eID
interoperability.
It either serves as a delegation component between the
SP-MW or S-PEPS and the needed SPware (appropriate MW server Component)
or enables SP-MW to communicate with other C-PEPS.

WP Work Package
WP29 Article 29 Data Protection Working Party

WP4
Work Package 4 of the e-CODEX project, Identity (eID for natural and legal
persons, roles, mandates and rights) and eSignatures

WSDL Web Services Description Language
WS-I Web Services Interoperability7
W3C World Wide Web Consortium

XACML
eXtensible Access Control Markup Language
http://saml.xml.org/xacml-oasis-standard

XAdES XML Advanced Digital signatures, published by ETSI as TS 101 903

7http://www.oasis-ws-i.org/

Deliverable 5.4 Developed Modules V1.0 11 of 81

Executive Summary

The e-Justice Communication via Online Data EXchange (e-CODEX) project aims to improve the
access of citizens and business to legal means cross border in Europe as well as to improve
interoperability between legal authorities within the EU. The goal is to achieve this objective with
ideally no impact to the existing national ICT solutions.

In this context transport of data and documents is a key piece of the solution. Any functionality to be
developed for a cross-border e-Justice service will necessarily mean transport of information from
one country to another also including communication between the e-Justice Portal and some
national solution. For this reason a work package explicitly dedicated to transport of data and
documents has been defined within e-CODEX: Exchange of documents/data, e-Filing and e-Payment
(WP5).

The objective of this document is to describe the official Software deliverables of WP5. There are two
main deliverables which are the Gateway (based on the open source project Holodeck) and the
generic connector framework handling the e-CODEX specific functionalities and components. For
both deliverables a detailed description of the workflows, components, configuration and database
layout is given.

In order to be as efficient as possible and, consequently, reduce the time and the cost of the
development, a deep analysis of the building blocks that were available was made at the beginning of
the project. Holodeck was chosen as the core of the gateway, and its “missing features” were also
identified. The features ‘REM ETSI evidence generator’, ‘enhanced logging’ and ‘web service interface
that supersedes the file system based approach’ were identified, analyzed and developed by the WP
5. The ‘back end web service’ and ‘logging module’ were introduced in the gateway itself and the
evidence generator was moved to the National Connector.

The logging module was based on the standard log4j implementation, recording the logged activity
to a data base instead of a variety of flat text files.

The back end web service is an additional interface to the ebMS gateway. It enables a way to send
messages from the web services perspective without access to the gateway file system, reinforcing
the security of the system and enabling a way to generate the initial SubMissionAcceptanceRejection
evidence.

The ‘REM ETSI evidence generator’ is a module integrated as part of the National Connector and it is
responsible of the generation of the selected evidences and its releasing through the gateway
connection or to the national system.

Once the Gateways and National Connectors are up and running they will provide the e-Delivery
functionalities required to put the pilots into service. Usual tasks following a software
implementation are maintenance and upgrading. For WP5 maintenance will mainly mean to solve
failings of the Gateways. Upgrading of Gateways contemplate to include dynamic discovery, … (to be
completed).

The next steps of the project from a WP 5 perspective will be defined in a Follow Up meeting to be
celebrated in February 2013.

Deliverable 5.4 Developed Modules V1.0 12 of 81

1. Introduction

1.1. Scope and Objective of Deliverable

This document is the deliverable D5.4 “Developed Modules” of Work Package (WP5) of the e-CODEX
project.

The document is stored on the BSCW https://www.jol.nrw.de/pub/bscw.cgi/ /index-de.html. The
Software Deliverables itself are also stored on the BSCW (https://www.jol.nrw.de/pub/bscw.cgi/
/index-de.html) and are available upon request.

1.2. WP5 General Objectives and Vision

e-CODEX is a Large Scale Project in the domain of e-Justice that aims to provide to citizens,
enterprises and legal professionals an easier access to justice in cross border procedures and to make
cross border collaboration of courts and authorities easier and more efficient by creating
interoperability of the existing national ICT solutions.

When structuring the work of the e-CODEX project, various considerations were followed to find an
optimal organizational structuring. The project aims to develop the interoperability building blocks
for e-Justice services in Europe that address the horizontal issues between Member States.
Furthermore, these building blocks will need to be proven in real e-Justice services in the countries
involved. The project organization will thus need to support these goals properly to ensure that they
can also be achieved from a managerial perspective.

Based on the initial building block breakdown8 for the large scale pilot implementation candidates,
WP5 aims to deliver the capability to bind together documents and data that need to be routed or
exchanged to enable European cross-border processes in e-Justice. As an example of this reusing
strategy e-CODEX signing, signature validation and ASIC creation features are provided through the
Security Library based on the DSS tool; the EvidenceBuilder library has been derived from the SPOCS
code.

1.3. Relations to Internal e-CODEX Environment

It is clear that there are dependencies between the different WP’s in e-CODEX context. The WP5 is
strongly linked to WP6 that enhances the overall functionality for e-Justice Services with the
“content” of the documents. Another link is to WP7 that provides the IT-groundwork and
architecture for interoperability between the systems to be connected, including the security and
legal aspects. Beyond that WP4 delivered the identification and electronic signature building blocks
used by WP5 software modules. WP3 is defining the underlying business processes of the judicial
proceedings considered within e-CODEX. Requirements resulting from these business processes have
been considered for the transport infrastructure implemented by WP5.

8 For a deeper view you can read “Deliverable 5.2 Reusable Assets”, chapter 4, “Transportation
Building Block”

https://www.jol.nrw.de/pub/bscw.cgi/d605296/index-de.html
https://www.jol.nrw.de/pub/bscw.cgi/d605296/index-de.html
https://www.jol.nrw.de/pub/bscw.cgi/d605296/index-de.html

Deliverable 5.4 Developed Modules V1.0 13 of 81

1.4. Relations to External e-CODEX Environment

WP5 has a strong relation to all other LSPs (especially to SPOCS and PEPPOL) with regards to the
transport infrastructure developed within these projects. The results, documents and expertise
gained by SPOCS and PEPPOL have been considered from the very beginning. Parts of their software
modules (e.g. the evidence builder) have been reused by e-CODEX.

1.5. Quality Management

Deliverable 5.4 has been provided as a first draft (version 0.5) for a commentary review 2 months
before the final delivery was planned. The review participants are all work package partners plus the
External Quality Manager. The review comments gained are collected by the work package leaders
and processed for the updated version (0.9.) which is delivered 2 weeks before the deadline of the
final delivery. A second commentary review will be done using this version 0.9 of D5.4. The
participants are again all work package partners plus the External Quality Manager.

The processing of all review comments is documented in the inspection report, which lists the review
comments line by line including a statement how the respective review comment has been
processed. The inspection report is published together with the update document of D5.4.

1.6. Risk Management

The risks as identified in the course of the creation of deliverable D5.4 and their probability and
possible impact are as follows:

ID Description Probability Impact Expected value Response Owner

 inherent residual inherent residual inherent residual

1 The MS cannot use
the SW modules
due to MS specific
requirements or
restrictions.

medium low high high high high reduce WP5,

All
pilotin
g MS

2 The needed sub
deliverables from
other WP’s are not
mature enough or
not ready.

medium medium high high high high accept WP4,
WP6,
WP5

3 The SW deliverables
are not available in
time.

medium medium high high high high accept WP5

4 Some Functionality
is missing

medium low high high high high reduce WP5

Table 2 Risks

1.7. Structure of the Document

The document is structured as follows:

Deliverable 5.4 Developed Modules V1.0 14 of 81

Chapter Description

1. Introduction Present the document and describe the work done

2. Gateway Description of SW Module Gateway

3. Generic Connector Framework Description of SW Module Generic Connector Framework

Table 3 Document Structure

Deliverable 5.4 Developed Modules V1.0 15 of 81

2. Software Module Gateway

2.1. Overview and Functionality

The Gateway of the e-CODEX project it is a piece of software that is responsible of several tasks.
Some of the features are provided by the ebMS implementation (Holodeck) on which the Gateway is
based:

 Transforms the National Message Format injected from the National Connector to the
standard ebMS message format.

 Signs and encrypts the communication between the different Gateways.

 Implements Reliability and Quality of Service configurable behavior. These features will be
reinforced in the next version because some failures need fixing.

Additionally, the project has complemented some extra features:

 Logging module that updates a Data Base in order to facilitate auditing tasks.

 The interface based on the file system scrutiny has been changed and implemented a web
service interface (Back end Interface)

 New Clean up service that purges the messages that couldn`t been downloaded at an
specified time.

2.2. Component Structure
The Gateway is a tightly coupled system based on the Open Source ebMS 3 implementation,
Holodeck9

Figure 1. Component Structure

9 http://holodeck-b2b.org

Deliverable 5.4 Developed Modules V1.0 16 of 81

Holodeck is deployed within Axis2 stack as a set of modules (inside axis2 processing pipeline) as
illustrated in the picture below:

Figure 2. Internal Structure of Holodeck

We will examine each module in further detail10.

2.2.1. ebMS Module

The "ebMS Module" is the folder called "holodeck-ebms3" located under the directory
"holodeck/msh/WEB-INF/modules/". The configuration file is located in "holodeck/msh/WEB-
INF/modules/holodeck-ebms3/META-INF/module.xml". This configuration file is shown below:

<module name="holodeck-ebms3" class="org.holodeck.ebms3.module.Ebms3Module">
 <parameter name="PersistenceUnit">ebms3-derby</parameter>
 <parameter name="PModesDir" locked="false">../../../../config/pmodes</parameter>
 <parameter name="Modules">holodeck-ebms3, holodeck-reliability, holodeck-security, rampart</parameter>
 <parameter name="GATEWAY_CONFIG_FILE">../../../../config/gateway.xml</parameter>
 <parameter name="MSHAddress" locked="false">http://localhost:8080/holodeck/services/msh</parameter>

 // ===
 The name of the folder in which submitted messages will be stored.
 It could be an absolute path to some folder on the file system, or
 just the name of a folder (in which case it will be automatically
 created under WEB-INF directory).
 // ===
 <parameter name="SubmittedMessagesFolder">../../../../store/send</parameter>
 // ===
 The value of this parameter is a comma-separated list of possible names
 (or IP addresses this local machine, that is the machine running this MSH)
 may have. It helps the MSH by looking at a given URL to determine if
 it is the URL of this MSH or the URL of another remote MSH by just
 comparing the machine name in the URL to the values of this parameter.
 // ===

10 The description of the different modules has been obtained from http://holodeck-
b2b.org/docs/developer/architecture.html

Deliverable 5.4 Developed Modules V1.0 17 of 81

 <parameter name="LocalMachine">localhost,127.0.0.1,holodeck,192.240.13.76</parameter>

 // ==
 If true, the MSH, when writing a message to database, it will also
 persist all the attachments the message may have to database. This
 would work for small to medium attachments (may be up 1 Giga per
 attachment). However, if an attachment is way bigger than 1 Giga, the
 database columns may be limited in storage space, and in this case it would
 be better if the MSH persist the attachment on the file system where
 there is no limit on storage (except for the disk capacity of course).
 Make this parameter false if you are planning on having attachment very
 large that may exceed 1 GB (a giga bytes) or whatever limit your database is set to
 // ===
 <parameter name="StoreAttachmentsInDB">false</parameter>
 // ===
 The name of the folder in which the attachments of the arriving messages
 will be stored.
 It could be an absolute path to some folder on the file system, or
 just the name of a folder (in which case it will be automatically
 created under WEB-INF\modules\holodeck-ebms3 directory).
 // ===
 <parameter name="ReceivedMessagesFolder">../../../../store/receive</parameter>
 <parameter name="Workers">../../../../config/workers.xml</parameter>

 <InFlow>
 <handler name="PModeFinder" class="org.holodeck.ebms3.handlers.PModeFinder">
 <order phase="ebms3InPhase" phaseFirst="true"/>
 </handler>
 <handler name="ErrorLogger" class="org.holodeck.ebms3.handlers.ErrorLogger">
 <order phase="ebms3InPhase" after="PModeFinder"/>
 </handler>
 <handler name="Validation" class="org.holodeck.ebms3.handlers.Validation">
 <order phase="ebms3InPhase" after="ErrorLogger"/>
 </handler>
 <handler name="ReceiptProcessor" class="org.holodeck.ebms3.handlers.ReceiptProcessor">
 </handler>
 <handler name="ReceiptGen" class="org.holodeck.ebms3.handlers.ReceiptGen">
 <order phase="ebms3InPhase" after="ReceiptProcessor"/>
 </handler>
 <handler name="PullProcessor" class="org.holodeck.ebms3.handlers.PullProcessor">
 <order phase="ebms3InPhase" after="ReceiptGen"/>
 </handler>
 <handler name="RespPackager" class="org.holodeck.ebms3.handlers.ResponsePackager">
 <order phase="ebms3InPhase" after="PullProcessor"/>
 </handler>
 <handler name="ReceivedUserMsg" class="org.holodeck.ebms3.handlers.ReceivedUserMsgHandler">
 <order phase="ebms3InPhase" after="RespPackager"/>
 </handler>
 <handler name="InvokeCallback" class="org.holodeck.ebms3.handlers.InvokeCallback">
 <order phase="ebms3InPhase" after="ReceivedUserMsg"/>
 </handler>
 <handler name="HeaderDetacher" class="org.holodeck.ebms3.handlers.HeaderDetacher">
 <order phase="ebms3InPhase" after="InvokeCallback"/>
 </handler>
 </InFlow>

 <OutFlow>

Deliverable 5.4 Developed Modules V1.0 18 of 81

 <handler name="Packager" class="org.holodeck.ebms3.handlers.Packager">
 <order phase="ebms3OutPhase" phaseFirst="true"/>
 </handler>
 <handler name="CallbackPersist"
 class="org.holodeck.ebms3.handlers.CallbackPersist">
 <order phase="ebms3OutPhase" after="Packager"/>
 </handler>
 <handler name="RespPackager" class="org.holodeck.ebms3.handlers.ResponsePackager">
 <order phase="ebms3OutPhase" after="CallbackPersist"/>
 </handler>
 <handler name="PullProcessor" class="org.holodeck.ebms3.handlers.PullProcessor">
 <order phase="ebms3OutPhase" after="RespPackager"/>
 </handler>
 <handler name="TrackReceipt" class="org.holodeck.ebms3.handlers.TrackReceipt">
 <order phase="ebms3OutPhase" after="PullProcessor"/>
 </handler>
 <handler name="ReceiptAppender" class="org.holodeck.ebms3.handlers.ReceiptAppender">
 <order phase="ebms3OutPhase" after="TrackReceipt"/>
 </handler>
 </OutFlow>

 <INFaultFlow/>
 <OutFaultFlow/>
</module>

 PersistenceUnit: the name of the JPA persistence unit. Persistence units are defined in the
configuration file "holodeck/msh/WEB-INF/classes/META-INF/persistence.xml". The default
persistence unit for the ebMS module is to use derby as embedded. If you want to use another
database, you can change the persistence unit here (but you have to create the database and tables
from ddl scripts provided in the directory "holodeck/store/derby/").

PModesDir: this is the directory where holodeck stores the P-Mode documents
("holodeck/config/pmodes")

Modules: this is the list of the modules that an outgoing message should go through

GATEWAY_CONFIG_FILE: this is the configuration file of Holodeck Gateway (holodeck service that
dispatches messages to various consumers). The default location is "holodeck/config/gateway.xml".

MSHAddress: this is the address of this MSH. You should replace "localhost" in the URL by the name
(or domain name) of the machine on which holodeck is running. Why holodeck needs to know its
own address? Well, this is used to determine the sender from the receiver when reading a P-Mode
document. By knowing its own address, this helps holodeck which figuring out which role (sender or
receiver) it plays within a given P-Mode document.

SubmittedMessagesFolder: this is the folder where a user (person or application) drops payloads
(data files) in there so that holodeck picks them up and either push them out in a message or make
them in a message ready to be pulled when a PullRequest arrives for them. The default location is
"holodeck/store/send/"

LocalMachine: the value of this parameter is a list of all the names for the local machine on which
holodeck is running (be it ip address, name, domain name, etc...). This parameter helps holodeck
determining which P-Mode is being used when it receives a message (not all messages contain the
"P-Mode" attribute in their SOAP header, and when such information is missing, holodeck makes
extra work to figure out what is the name of the P-Mode to associate with the message being
received. Knowing all the names of the local machine, helps determining the P-Mode name.

StoreAttachmentsInDB: this parameter is not used anymore. It used to be an option to choose
whether storing attachment in database (when persisting a message to database). Holodeck does not

Deliverable 5.4 Developed Modules V1.0 19 of 81

store attachments in database (it stores them as files on the hard disk), but only stores a reference to
the attachments. This is more practical because if the attachments are really huge, the database
tables cannot hold them, and that's why attachments are stored as files on the disk).

ReceivedMessagesFolder: this is the folder where holodeck stores received messages. Actually when
the consumer called "org.holodeck.ebms3.consumers.impl.SaveToFolder" gets the message from
holodeck gateway, it stores the message there.

Workers: this is the configuration file that contains the workers (background tasks executed
periodically). The default location of this file is "holodeck/config/workers.xml".

2.2.2. Reliability Module

The "Reliability Module" is the folder called "holodeck-reliability" located under the directory
"holodeck/msh/WEB-INF/modules/". The configuration file for this module which is
"holodeck/msh/WEB-INF/modules/holodeck-reliability/META-INF/module.xml". This configuration
file is shown below (showing only the parameters):

 <module name="holodeck-reliability"

 class="org.holodeck.reliability.module.ReliabilityModule">

 // --

 // The name of the folder in which attachments will be stored.

 // It could be an absolute path to some folder on the file system, or

 // just the name of a folder (in which case it will be automatically

 // created under WEB-INF\modules\holodeck-reliability directory).

 // --

 <parameter name="MessageStorageFolder">Storage_Folder</parameter>

 <parameter name="RELIABILITY_CONFIG_FILE">../../../../config/reliability-config.xml</parameter>

 <parameter name="PersistenceUnit">wsrm-derby</parameter>

 <parameter name="MessageLifetime" locked="false">P29D</parameter>

 <parameter name="ResendFromDBAtStartup">false</parameter>

 ...

 </module>

MessageStorageFolder: this is the folder where the reliability stores the attachments of an outgoing
message (reliable outgoing messages have to be stored in the database prior to sending them,
because in case no acknowledgment is received for them, they would have to be resent by the
reliability module). This details should not concern the user (the user should not care where the
reliability module stores the attachments).

RELIABILITY_CONFIG_FILE: this is the configuration file that contains quality of service definitions for
reliability. The default file is "holodeck/config/reliability-config.xml".

PersistenceUnit: this is the JPA persistence unit used by the reliability module to persist outgoing
messages (the default is embedded Derby).

MessageLifetime: the value of this parameter specifies the time interval after which a message
expires in the database.

ResendFromDBAtStartup: the value of this parameter controls whether the "re-sender" background
task (in the reliability module) should execute when starting up holodeck. When starting holodeck
(and therefore the reliability module as well), there could be some messages stored in the database

Deliverable 5.4 Developed Modules V1.0 20 of 81

of the reliability module that have been sent already in the past but not acknowledged yet. So this
parameter controls whether these messages should be resent or not as holodeck starts up.

2.2.3. Security Module

The "Security Module" is the folder called "holodeck-security" located under the directory
"holodeck/msh/WEB-INF/modules/". The configuration file for this module is "holodeck/msh/WEB-
INF/modules/holodeck-security/META-INF/module.xml". This configuration file is shown below
(showing only the parameters):

<module name="holodeck-security" class="org.holodeck.security.module.SecurityModule">

 <parameter name="SecurityConfigFile">../../../../config/security-config.xml</parameter>

 <parameter name="PoliciesFolder">../../../../config/policies</parameter>

 <parameter name="KeysFolder">../../../../config/keys</parameter>

 ...

</module>

SecurityConfigFile: this is the configuration file that tells the security module what keystore,
encryption user, callback class (for passwords), and the WSS policy to use.

PoliciesFolder: this is the folder where holodeck stores WSS policies.

KeysFolder: this is the folder where holodeck stores security keys and keystores.

2.2.4. Logging

2.2.4.1. Scope and Objective of the Module

The Logging Module of the e-CODEX Gateway provides basic logging functionality for the Gateway
application.

It is based on the Apache Log4j Standard in version 1.2.1511 and extends this standard with a
message logging functionality which is needed to fulfil the requirements of the e-CODEX Project.

Due to the fact that the e-CODEX Gateway implementation based on the Open Source
implementation Holodeck, the logging module fits other requirements which cover expandability of
the implementation.

It provides the functionality of message and event logging to the other gateway communication
modules using standardized interfaces.

11 Log4j project website (12-10-2012): http://logging.apache.org/log4j/1.2/

http://logging.apache.org/log4j/1.2/

Deliverable 5.4 Developed Modules V1.0 21 of 81

Figure 3 e-CODEX Holodeck gateway modules

Evidences

Backend

ebMS

Security

Reliability

Logging

File appender

Database appender

Deliverable 5.4 Developed Modules V1.0 22 of 81

2.2.4.1.1. Event Logging

The basic event logging functionality is part of the Apache Log4j 12implementation which the logging
module is based on. It provides eight different log levels for the different types of a logging event.

Name Description

ALL The ALL has the lowest possible rank and is intended to
turn on all logging

DEBUG The DEBUG Level designates fine-grained informational
events that are most useful to debug an application.

ERROR The ERROR level designates error events that might still
allow the application to continue running.

FATAL The FATAL level designates very severe error events that
will presumably lead the application to abort.

INFO The INFO level designates informational messages that
highlight the progress of the application at coarse-grained
level.

OFF The OFF has the highest possible rank and is intended to
turn off logging.

TRACE The TRACE Level designates finer-grained informational
events than the DEBUG.

WARN The WARN level designates potentially harmful situations.

Table 4 – Standard Apache Log4j log level

For these levels the logging module is using the standard interfaces described in the Apache Log4j
documentation13.

It has been selected the most useful log levels because the rest (ALL, OFF) mentioned in the
standard14 aren’t very common. The ALL level, instructs to the logger system that all the messages
will be recorded, the OFF level turn off the logger system.

2.2.4.1.2. Message Logging

To cover the requirement WP7-RQ-NF-02115 for the message logging in the judicial area which is
described in D7.2, the logging module of the e-CODEX gateway implementation must provide a basic
message logging functionality. This message logging will be used in the different communication
interfaces and their calls in the gateway communication modules.

To reuse the existing logging functions provided by the Apache Log4j logging library, the e-CODEX
gateway logging module extend this library by adding a special log level in the log level hierarchy.

Name Description

12 Log4j project website (12-10-2012): http://logging.apache.org/log4j/1.2/
13 Log4j online documentation (12-10-2012): http://logging.apache.org/log4j/1.2/manual.html

14 http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html

15 D7.2 Requirements Finalisation & D3.2 Described Test Scenarios. 10.Appendix III: Non-functional
Requirements. Page 97.

http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/1.2/manual.html

Deliverable 5.4 Developed Modules V1.0 23 of 81

MESSAGE The MESSAGE level is a holodeck specific log level for the
message event logging.

Table 5 – e-CODEX specific Message log level

For the message logging other and specific attributes are necessary. These fields are derived from the
message information fields of the ebMS message. They are not containing personal information of
the sender or recipient.

Type Name Description

String messageId Message ID of the current message

String sender Sender ID or sender address

String fromRole The fromRole of the ebMS sender

String recipient recipient ID or recipient address

String toRole The toRole of the ebMS recipient

String service Service parameter of the ebMS message flow

String action Action parameter of the ebMS message flow

String conversationId ConversationID which the current message belongs to

String pmode P-Mode which is used for the message transport

String status Current status of the message (incoming/outgoing)

Date timestamp Timestamp of the message logging event. Is set by the constructor

Table 6 – Message log level fields

2.2.4.2. Configuration

The configuration of the logging module will be done in the log4j.xml file in the directory msh\WEB-
INF\classes\ of the Holodeck installation directory.

This file used the standard log4j XML-schema to configure the different appenders for the log level
and modules.

The standard configuration contains the following appenders:

Name Type Log level

Axis2FILE File Appender DEBUG

Ebms3FILE File Appender DEBUG

HibFILE File Appender INFO

LoggingFILE File Appender DEBUG

WsrmFILE File Appender DEBUG

SecurityFILE File Appender DEBUG

BackendFILE File Appender DEBUG

MessageHolodeckAppender Holodeck Appender Message

EventHolodeckAppender Holodeck Appender Error

Table 7 – e-CODEX Gateway Log4j logging configuration

Deliverable 5.4 Developed Modules V1.0 24 of 81

Other appender could be configured by adding the following configuration to the file.

Figure 4 – Appender configuration

Figure 5 – Logger configuration

<logger additivity="false" name="[package path as root path for the specified appender]">

 <appender-ref ref="[appender reference]"/>

</logger>

<logger additivity="false" name="[package path as root path for the specified appender]">

 <level value="[log level]"/>

 <appender-ref ref="[appender reference]"/>

</logger>

<appender class="[appender class as absolute package name]" name="[appender name]">

[parameter for File appender configuration

<param value="true" name="Append"/>

<param value="[path to file]" name="File"/>

<param value="5120KB" name="MaxFileSize"/>

<layout class="org.apache.log4j.PatternLayout">

 <param value="%d %-5p %c %x - %m%n" name="ConversionPattern"/>

</layout>

]

[parameter for the database appender

 <param name="Threshold" value="[log level]"/>

]

</appender>

Deliverable 5.4 Developed Modules V1.0 25 of 81

2.2.4.3. Function call

To use the logging functionality in the gateway implementation, the standard Log4j16 function call
must be used.

For each class in which the logging module should be used, a separate instance of the logger. An
instance will be provided by the getLogger method, which organizes a pool of logger instances.

Figure 6 – Logger declaration

After a logger instance is available the standard logger methods should be used.

For each log level several logging methods are available.

The way to call the message logging is shown in Figure 7.

Figure 7 – Logger call

16 Apache Log4j Java doc (12-10-2012): https://logging.apache.org/log4j/1.2/apidocs/index.html

 [Message logger call]

log.log(org.holodeck.logging.level.Message.MESSAGE,

org.holodeck.logging.persistent.MessageInfo);

private static final Logger log =

Logger.getLogger([Classname].class.getName());

https://logging.apache.org/log4j/1.2/apidocs/index.html

Deliverable 5.4 Developed Modules V1.0 26 of 81

2.2.5. Backend Web Service

2.2.5.1. Subsystem Definition.

Backend Web Service is a module added to the original Holodeck server. This module or extension
provides a way of communicating with the original server using Web Services instead of file
submission.

2.2.5.1.1. Subsystem Description

Holodeck b2b is a free open-source software for b2b messaging, based on the Oasis specifications for
ebXML Messaging version 3 and aligned with AS4 profile17 as has been stated before.

Messages can be submitted to Holodeck, either to be sent out (i.e. pushed) or to be stored so that
they can be pulled by other B2B partners18. However, nowadays, this message submission can only
be done in one way, manually, creating an empty folder and dropping payloads in it, Holodeck will
then pick up these payloads along metadata in an xml file to create a message that will either be
pushed (sent out) or stored to be pulled by others.

Therefore, Backend Web Service module will provide a way of submitting messages using a Web
Service including the operations of sending, downloading and listing pending messages.

2.2.5.1.2. Subsystem Scope.

The main functions of the Backend Web Service are:

 Sending messages using the Holodeck API to another Gateway.

 Validating the EBMS Header parameters and the existence of payload data.

 Mapping P-Mode using some parameters of the EBMS Header.

 Downloading pending messages of the Gateway.

 Listing pending messages of the Gateway.

 Invoking the Logging module.

 Deleting expired messages periodically.

The web service has four operations:

 sendMessage: send a message to another Gateway using the data of the SOAP request.

 sendMessageWithReference: send a message to another Gateway using the data
downloaded from the URI of the SOAP request.

 downloadMessage: download a message from the Gateway server.

 listPendingMessages: list the messages which are pending in the Gateway server.

Figure 8 WSDL Diagram

17 http://holodeck-b2b.org/docs/index.html

18 http://holodeck-b2b.org/docs/holodeck-features.html

Deliverable 5.4 Developed Modules V1.0 27 of 81

2.2.5.1.3. Technological Environment Description

The hardware and software requirements are identical as in the previous modules.

2.2.5.1.4. Principal Users Identification

Backend Web Services cannot differentiate between the clients who are invoking the web service.
Therefore, there is only one type of user:

 National Connector: every Gateway is expected to be only invoked by its own
National Connector using the Backend Web Service.

The control of the access to this interface will be made by the security mechanisms of the underlying
infrastructure (provided by the different MS) and is out of the scope of this project. Nevertheless, the
gateway only accepts SSL connections.

2.2.5.2. Logical Model

The business process of Backend Web Service is divided into the web service operations:

 sendMessage

 sendMessageWithReference

 downloadMessage

 listPendingMessages

Deliverable 5.4 Developed Modules V1.0 28 of 81

2.2.5.2.1. SendMessage

The objective of this operation is to send data from the Gateway A (origin where it has been
invoked) to the Gateway B (target server).

Technically, it differs from the common web services operation because it receives many of
its parameters using the SOAP Header. Therefore, the arguments of the operations are
divided in two groups:

 EBMS header: this element is based on the Messaging header of the ebMS-3
standard. It includes the different parameters which will define the communication
between the Gateway A and the Gateway B.

 Data payloads: this element includes the binary data codified in Base64 of the
different payloads.

The return value is the following one:

 messageID: it is the ID of the EBMS3 message sent.

This workflow of the operation is the following one:

 For the Gateway A:
1. The Message is received.
2. The Back end module validates the parameters.
3. According to the parameters received, the EMBS module is invoked on order to

send the message to the Gateway B.
4. The Back end module waits until the message has been sent or failed.
5. The operation returns the Id of the message sent.

 For the Gateway B:
1. The EBMS module receives the message from the Gateway A and invokes the

Back end consumer.
2. The Back end module copies the message to the hard disk into a temporary

folder and inserts its information into the DB.
3. The EBMS module informs the Gateway A that the message has been sent

successfully.

This is the sequence diagram of the sendMessage operation:

Figure 9 Send Message Diagram

Deliverable 5.4 Developed Modules V1.0 29 of 81

2.2.5.2.2. SendMessageWithReference

The objective of this operation is to send data from the Gateway A (origin where it has been
invoked) to the Gateway B (target server).

It differs from the previous operation because it receives URLs where the data must be
downloaded. The arguments of the operations are also divided in two groups:

 EBMS header: this element is based on the Messaging header of the ebMS-3
standard. It includes the different parameters which will define the communication
between the Gateway A and the Gateway B.

 Data payloads: this element includes the URLs where the payload data must be
downloaded.

The return value is the following one:

 messageID: it is the EBMS ID of the EBMS3 message sent.

This workflow of the operation is the following one:

 For the Gateway A:
1. The Message is received.
2. The Back end module validates the parameters
3. The payloads data is downloaded.
4. According to the parameters, the EMBS module is invoked in order to send the

message to the Gateway B.
5. The Back end module waits until the message has been sent or failed.
6. The operation returns the Id of the message sent.

 For the Gateway B:
1. The EBMS module receives the message from the Gateway A and invokes the

Back end consumer.
2. The Back end module copies the message to the hard disk into a temporary folde

and inserts its information into the DB.
3. The EBMS module informs the Gateway A that the message has been sent

successfully.

This is the sequence diagram of the sendMessageWithReference operation:

Figure 10 Send Message with Reference Diagram

Deliverable 5.4 Developed Modules V1.0 30 of 81

2.2.5.2.3. DownloadMessage

The objective of this operation is to retrieve the message data.

The argument of the operations is the following one:

 messageID: this is the Back end ID of the message to download.

The return values are the following ones:

 EBMS header: this element is based on the Message header of the ebMS-3 standard.
It includes the different parameters of the EBMS shipment.

 Data payloads: this element includes the binary data codified in Base64 of the
different payloads.

This workflow of the operation is the following one:

1. The request is received.
2. The Back end module validates the parameters.
3. The Back end module loads the Message from the hard disk and DB.
4. The operation returns the message.

This is the sequence diagram of the downloadMessage operation:

Figure 11 Download Message Diagram

Deliverable 5.4 Developed Modules V1.0 31 of 81

2.2.5.2.1. listPendingsMessages

The objective of this operation is to retrieve a list of messages which can be downloaded.

The operation does not receive any argument.

The return values are the following ones:

 messagesID: the list of ID of the messages which can be downloaded.

This workflow of the operation is the following one:

1. The request is received.
2. The Back end looks in the DB for the messages which can be downloaded.
3. The operation returns the list.

This is the sequence diagram of the listPendingsMessages operation:

Figure 12 List Pending Message Diagram

2.2.5.3. Use Case Analysis

There are four use cases identified in the Backend Web Service which matches with the service
operations:

 Send message

 Send message with reference

 Download message

 List pending messages

Deliverable 5.4 Developed Modules V1.0 32 of 81

This is the Use Case Diagram:

Figure 13 Use Cases Backend Web Service

2.2.5.4. Error Codes

2.2.6. P-Modes Configuration

A P-Mode is a concept introduced in the ebMS3 specification that is used for managing the way of
sending and processing ebXML messages between two MSHs.

In this P-Mode, a set of parameters, like reliability, security, sign, encryption, MEP... are defined for
establishing the sending.

The syntax of a P-Mode file is

 The <Producer> node indicates the entity that generates User Messages. An entity is a
person, an application, a corporation... A User Message is a SOAP message that contains
payload data. It is represented by the xml element <eb:From> within the SOAP header in the
ebXML specification.

 The <UserService> indicates the destination of the User Message. It is represented by the xml
elements <eb:To>, <eb:CollaborationInfo>, <eb:PayloadInfo> and <eb:MessageProperties> in
the ebXML specification.

Deliverable 5.4 Developed Modules V1.0 33 of 81

 The <Binding> element contains information about the transport of the message (URL
address of the destination, the SOAP version, SOAP action, and MEP (Message Exchange
Pattern) to use) and about detailed information of each leg of the MEP being used (for
example, the reliability and the security that are applied to each leg of the MEP).

These parameters are defined in the OASIS ebXML Messaging Services Version 3.019:

 PMode.ID: (optional)
Is the identifier for the P-Mode. This identifier is user-defined and optional, for the
convenience of P-Mode management. It must uniquely identify the P-Mode among all P-
Modes deployed on the same MSH, and may be absent if the P-Mode is identified by other
means, e.g. embedded in a larger structure that is itself identified, or has parameter values
distinct from other P-Modes used on the same MSH. If the ID is specified, the
AgreementRef/@pmode attribute value is also expected to be set in associated messages.

 PMode.MEP
The type of ebMS MEP associated with this P-Mode. The value must be a URI, e.g:
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/oneWay.

 PMode.MEPbinding:
The transport channel binding assigned to the MEP (push, pull, sync, push-and-push, push-
and-pull, pull-and-push, pull-and-pull…). The value must be a URI, e.g: http://docs.oasis-
open.org/ebxml-msg/ebms/v3.0/ns/core/200704/push.

 PMode.Initiator.Party:
(PMode.Initiator and its sub-elements are optional if PMode.Responder is present.) Qualifies
the party initiating the MEP (see Section 2.2.3). A user message initiating an MEP instance
under this P-Mode must have its eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:From
element contain the same PartyId elements as the PartyId elements defined in this
parameter. Any user message sent to the initiator must have its eb:PartyInfo/eb:To map to
or be compatible with this parameter.

 PMode.Initiator.Role:
Name of the role assumed by the party sending the first message of this MEP. Either the
message element eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:From/eb:Role or the
element eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:To/eb:Role of each message in this
MEP must have this value, depending on the direction of message transfer.

 PMode.Responder.Party:
(PMode.Responder and its sub-elements are optional if PMode.Initiator is present.) Qualifies
the party responding to the initiator party in this MEP. Any user message sent to the
responder must have its eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:To element contain
the same PartyId elements as the PartyId elements defined in this parameter.

 PMode.Responder.Role:
Name of the role assumed by the party receiving the first message of this MEP. Either the
message element eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:From/eb:Roleor the

19 OASIS ebXML Messaging Services Version 3.0: Part 1, Core Features OASIS Standard, 1 October
2007

Deliverable 5.4 Developed Modules V1.0 34 of 81

element eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:To/eb:Roleof each message in this
MEP must have this value, depending on the direction of message transfer.

 PMode[1].Protocol.Address:

The value of this parameter represents the address (endpoint URL) of the Receiver MSH (or
Receiver Party) to which Messages under this P-Mode leg are to be sent. Note that a URL
generally determines the transport protocol (for example, if the endpoint is an email address,
then the transport protocol must be SMTP; if the address scheme is "http", then the
transport protocol must be HTTP).

 PMode[1].Protocol.SOAPVersion:
This parameter indicates the SOAP version to be used (1.1 or 1.2). In some implementations,
this parameter may be constrained by the implementation, and not set by users.

 PMode[1].BusinessInfo.Service:
Name of the service to which the User message is intended to be delivered. Its content
should map to the element eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:Service.

 PMode[1].BusinessInfo.Action:
Name of the action the User message is intended to invoke. Its content should map to the
element eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:Action

 PMode[1].BusinessInfo.MPC:
The value of this parameter is the identifier of the MPC (Message Partition Channel) to which
the message is assigned. It maps to the attribute eb:Messaging/eb:UserMessage/@mpc.

The structure of a P-Mode can be defined in different ways.

1) First Scenario

In this approach, all the nodes that a P-Mode node needs for working are defined inside it.

This configuration does not allow reusing these internal nodes.

Here is an example of this kind of configuration:

<PModes>

 <PMode name="PMode01">

 <Producer name="producer01">

 ...

 </Producer>

 <UserService name="userService01">

 ...

 </UserService>

 <Binding name="binding01">

 ...

 </Binding>

 </PMode>

 <PMode name="PMode02">

Deliverable 5.4 Developed Modules V1.0 35 of 81

 <Producer name="producer02">

 ...

 </Producer>

 <UserService name="userService02">

 ...

 </UserService>

 <Binding name="binding02">

 ...

 </Binding>

 </PMode>

</PModes>

2) Second Scenario

In this other approach is to define, separately, the <Producer>, <UserService> and <Binding> nodes,
so it is possible to re-using them in different <PMode> configurations.

In this approach, the nodes that a P-Mode node needs for working are defined separately, so they
can be re-used by different P-Mode nodes.

The first scenario will require larger configuration files than the second because you can define
several P-Modes with the same UserService and different Producers, or you can define different
Bindings with the same P-Mode and different Producers.

e-CODEX will use this approach.

Here is an example of this kind of configuration:

<PModes>

 <Producer name="producer01">

 ...

 </Producer>

 <UserService name="userService01">

 ...

 </UserService>

 <Binding name="binding01">

 <MEP>

 <Leg userService=" userService01" producer=" producer01" ...>

 </Leg>

 </MEP>

 </Binding>

 <PMode name="PMode01" binding="binding01" />

</PModes>

Following it is described a complete example of a P-Mode syntax definition:

<PModes>
 <Producer name="GW-AT-EPO">
 <PartyId>GW-EE</PartyId>

Deliverable 5.4 Developed Modules V1.0 36 of 81

 <Role>GW-EPO</Role>
 </Producer>
 <UserService name="EPO_AT">
 <ToPartyInfo>
 <PartyId>AT</PartyId>
 <Role>GW</Role>
 </ToPartyInfo>
 <CollaborationInfo>
 <Service>EPO</Service>
 <Action>EPO</Action>
 </CollaborationInfo>
 <PayloadInfo>
 <Message label="shipMsg" maxSize="3000">
 <SoapBody />
 </Message>
 </PayloadInfo>
 </UserService>

 <Binding name="SC_AT">
 <MEP name="One-Way/Push">
 <Leg number="1" mpc="epo" userService="EPO_AT" security="sign-encrypt-body-header" producer="GW-
AT-EPO">
 <Endpoint address="http://localhost:8280/holodeck/services/msh" soapVersion="1.1" />
 </Leg>
 </MEP>
 </Binding>

 <PMode name="EPO_AT" binding="SC_AT" />
</PModes>

2.2.7. DB Schemas

ER Diagram of Databases and some description (automatically generated)

Deliverable 5.4 Developed Modules V1.0 37 of 81

Table Name ACKS

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 CALLBACKACK_ID P Y VARCHAR (255 CHAR) LT

2 ACKTO VARCHAR (255 CHAR) LT

3 GROUPID VARCHAR (255 CHAR) LT

4 SENT NUMERIC (1) LT

5 SEQ_NUMBER VARCHAR (255 CHAR) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

ACKS_PK PK CALLBACKACK_ID ASC

Deliverable 5.4 Developed Modules V1.0 38 of 81

Table Name ATTACHMENTS

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 ID P Y VARCHAR (255 CHAR) LT Unique identifier of the record

2 CONTENTID VARCHAR (255 CHAR) LT Name of the Payload

3 CONTENTTYPE VARCHAR (255 CHAR) LT MIME type of the transmitted file

4 FILEPATH VARCHAR (255 CHAR) LT Complete path where the attachment will be temporary stored until the
transmission or downloading of the message

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

ATTACHMENTS_PK PK ID ASC

Deliverable 5.4 Developed Modules V1.0 39 of 81

Table Name LOGGEREVENT

This table has been implemented to supersede the conventional use of text log files that difficults the auditing tasks.

The object of this table is the recording of the actions executed. It is used mostly for debugging purposes because it records technical information not
business information.
Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 ID P Y VARCHAR (255 CHAR) LT Unique identifier of the record

2 LOGDATE Timestamp (6) LT Date and Time of the event

3 LOG_CLASSNAME VARCHAR (255 CHAR) LT Class in the code that has triggered the recording of the action

4 LOG_LINENUMBER VARCHAR (255 CHAR) LT Line number of the class that contains the instruction that has triggered the recording of the action

5 LOG_METHODNAME VARCHAR (255 CHAR) LT Method inside the class that has triggered the recording of the action

6 LOGGER VARCHAR (255 CHAR) LT Class in the code that has triggered the recording of the action

7 MSG VARCHAR (2000 CHAR) LT Description of the action that is occurring when the logger has been launched

8 PRIORITY VARCHAR (255 CHAR) LT Assigned level to the message. Enables the filtering of the messages

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

LOGGEREVENT_PK PK ID ASC

Deliverable 5.4 Developed Modules V1.0 40 of 81

Table Name LOGGERMESSAGE

This table has been implemented to supersede the conventional use of text log files that difficult the auditing tasks.

The object of this table is the recording of the actions executed on the messages.
Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 ID P Y VARCHAR (255 CHAR) LT Unique identifier of the record

2 ACTION VARCHAR (255 CHAR) LT Identifies the action made, e.g. ‘push’, ‘sendMessage’,
‘downloadMessage’,…

3 CONVERSATIONID VARCHAR (255 CHAR) LT Identifier assigned by the user to correlate the message dialogue

4 FROMROLE VARCHAR (255 CHAR) LT Role of the sending gateway

5 MESSAGEID VARCHAR (255 CHAR) LT Identifier assigned by Holodeck to message

6 PMODE VARCHAR (255 CHAR) LT P-Mode used by the sending gateway to transmit the message

7 RECIPIENT VARCHAR (255 CHAR) LT Destination country

8 SENDER VARCHAR (255 CHAR) LT Sender country

9 SERVICE VARCHAR (255 CHAR) LT Back end service invoked, e.g. ‘DownloadMessageService’,
‘SendMessageService’,…

10 STATUS VARCHAR (255 CHAR) LT Result of the action, e.g. ‘SENT_OK’, ‘MESSAGE_DOWNLOADED’,…

11 TIMESTAMP Timestamp (6) LT Date and Time of the event

12 TOROLE VARCHAR (255 CHAR) LT Role of the receiving gateway

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

Deliverable 5.4 Developed Modules V1.0 41 of 81

Index Name State Functional Spatial Expression Column Name
Sort

Order

LOGGERMESSAGE_PK PK ID ASC

Deliverable 5.4 Developed Modules V1.0 42 of 81

Table Name MESSAGE

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 IDMESSAGE P Y NUMERIC (10) LT Unique identifier of the message for this table

2 DELETED NUMERIC (1) LT Indicator that informs if the message has been deleted or not (0->no, 1-
>yes)

3 DIRECTORY VARCHAR (1024 CHAR) LT Folder that contains temporary the message until the message
transmission has been completed or it has been downloaded

4 DOWNLOADED NUMERIC (1) LT Indicator that informs if the message has been downloaded or not (0-
>no, 1->yes)

5 MESSAGEDATE Timestamp (6) LT Date and Time of the event

6 MESSAGEUID VARCHAR (128 CHAR) LT Identifier assigned by Holodeck to message

7 PMODE VARCHAR (128 CHAR) LT P-Mode used by the sending gateway to transmit the message

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

MESSAGE_PK PK IDMESSAGE ASC

Foreign Keys (referred from)

Name Referred From Mandatory Transferable In Arc Column Name

FK3454796EA6FCC7E9 PAYLOAD Y IDMESSAGE

Deliverable 5.4 Developed Modules V1.0 43 of 81

Table Name MSG_CALLBACK

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 ID P Y VARCHAR (255 CHAR) LT

2 CALLBACK_CLASS VARCHAR (255 CHAR) LT

3 LEGNUMBER NUMERIC (10) LT

4 MESSAGEID VARCHAR (255 CHAR) LT

5 PMODE VARCHAR (255 CHAR) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

MSG_CALLBACK_PK PK ID ASC

Deliverable 5.4 Developed Modules V1.0 44 of 81

Table Name ORDERED_MSG

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 OMESSAGE_ID P Y VARCHAR (255 CHAR) LT

2 CONTENT_TYPE VARCHAR (255 CHAR) LT

3 MIME_FILE VARCHAR (255 CHAR) LT

4 MSG_CONTEXT BLOB (4000) LT

5 DELIVERED NUMERIC (1) LT

6 EXPIRYTIME Timestamp (6) LT

7 FAULTED NUMERIC (1) LT

8 GROUPID VARCHAR (255 CHAR) LT

9 SEQ_NUMBER NUMERIC (10) LT

10 SERVICE_URL VARCHAR (255 CHAR) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

ORDERED_MSG_PK PK OMESSAGE_ID ASC

Foreign Keys (referred from)

Name Referred From Mandatory Transferable In Arc Column Name

FKFD00A3C0112E73C ORDERED_MSG_ATTACHMENTS Y Y OMESSAGE_ID

Deliverable 5.4 Developed Modules V1.0 45 of 81

Table Name ORDERED_MSG_ATTACHMENTS

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 ORDERED_MSG_OMESSAGE_ID F Y VARCHAR (255 CHAR) LT

2 ATTACHMENTS_ID Y VARCHAR (255 CHAR) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

ORDERED_MSG_ATTACHMENTS_ATTACHMENTS_ID_UN UK ATTACHMENTS_ID ASC

Foreign Keys (referring to)

Name Refering To Mandatory Transferable In Arc Column Name

FKFD00A3C0112E73C ORDERED_MSG Y Y OMESSAGE_ID

Deliverable 5.4 Developed Modules V1.0 46 of 81

Table Name PAYLOAD

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 IDPAYLOAD P Y NUMERIC (10) LT

2 FILENAME VARCHAR (256 CHAR) LT

3 IDMESSAGE F NUMERIC (10) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

PAYLOAD_PK PK IDPAYLOAD ASC

Foreign Keys (referring to)

Name Refering To Mandatory Transferable In Arc Column Name

FK3454796EA6FCC7E9 MESSAGE Y IDMESSAGE

Deliverable 5.4 Developed Modules V1.0 47 of 81

Table Name RECEIPTS

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 RECEIPT_ID P Y VARCHAR (255 CHAR) LT

2 MESSAGEID VARCHAR (255 CHAR) LT

3 NON_REPUDIATION_INFO CLOB (4000) LT

4 REFTOMESSAEID VARCHAR (255 CHAR) LT

5 SENT NUMERIC (1) LT

6 TIMESTAMP Timestamp (6) LT

7 TO_URL VARCHAR (255 CHAR) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

RECEIPTS_PK PK RECEIPT_ID ASC

Deliverable 5.4 Developed Modules V1.0 48 of 81

Table Name RECEIPT_TRACKING

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 ID P Y VARCHAR (255 CHAR) LT

2 MESSAGEID VARCHAR (255 CHAR) LT

3 PMODE VARCHAR (255 CHAR) LT

4 RECEIPT_RECEIVED NUMERIC (1) LT

5 RECEIPT CLOB (4000) LT

6 TOURL VARCHAR (255 CHAR) LT

7 REQUEST_ID F VARCHAR (255 CHAR) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

RECEIPT_TRACKING_PK PK ID ASC

RECEIPT_TRACKING_MESSAGEID_UN UK MESSAGEID ASC

Foreign Keys (referring to)

Name Refering To Mandatory Transferable In Arc Column Name

FK78EC851E85558B8E USERMSG_PUSH Y ID

Deliverable 5.4 Developed Modules V1.0 49 of 81

Table Name RECEIVED_RANGES

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 RECEIVEDRANGE_ID P Y VARCHAR (255 CHAR) LT

2 GROUPID VARCHAR (255 CHAR) LT

3 MAX_SEQ NUMERIC (10) LT

4 MIN_SEQ NUMERIC (10) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

RECEIVED_RANGES_PK PK RECEIVEDRANGE_ID ASC

Deliverable 5.4 Developed Modules V1.0 50 of 81

Table Name RECEIVED_USERMSG

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 ID P Y VARCHAR (255 CHAR) LT

2 CONTENT_TYPE VARCHAR (255 CHAR) LT

3 MIME_FILE VARCHAR (255 CHAR) LT

4 MSG_CONTEXT BLOB (4000) LT

5 EBMS3_ACTION VARCHAR (255 CHAR) LT

6 FROM_PARTY VARCHAR (255 CHAR) LT

7 MESSAGEID VARCHAR (255 CHAR) LT

8 MPC VARCHAR (255 CHAR) LT

9 MSG_INFOSET BLOB (4000) LT

10 REFTOMESSAGEID VARCHAR (255 CHAR) LT

11 EBMS3_SERVICE VARCHAR (255 CHAR) LT

12 TO_PARTY VARCHAR (255 CHAR) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

RECEIVED_USERMSG_PK PK ID ASC

Deliverable 5.4 Developed Modules V1.0 51 of 81

Foreign Keys (referred from)

Name Referred From Mandatory Transferable In Arc Column Name

FK84D1352918A1EF0F RECEIVED_USERMSG_ATTACHMENTS Y Y ID

Deliverable 5.4 Developed Modules V1.0 52 of 81

Table Name RECEIVED_USERMSG_ATTACHMENTS

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 RECEIVED_USERMSG_ID F Y VARCHAR (255 CHAR) LT

2 ATTACHMENTS_ID Y VARCHAR (255 CHAR) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

RECEIVED_USERMSG_ATTACHMENTS_ATTACHMENTS_ID_UN UK ATTACHMENTS_ID ASC

Foreign Keys (referring to)

Name Refering To Mandatory Transferable In Arc Column Name

FK84D1352918A1EF0F RECEIVED_USERMSG Y Y ID

Deliverable 5.4 Developed Modules V1.0 53 of 81

Table Name RECEIVER_GROUPS

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 GROUP_ID P Y VARCHAR (255 CHAR) LT

2 CLOSED NUMERIC (1) LT

3 COMPLETE NUMERIC (1) LT

4 DELIVERED_COUNT NUMERIC (10) LT

5 GROUP_EXPRITYTIME_UTC VARCHAR (255 CHAR) LT

6 GROUPID VARCHAR (255 CHAR) LT

7 MAX_IDLE_DURATION VARCHAR (255 CHAR) LT

8 HIGHEST_SEQ_RECEIVED NUMERIC (10) LT

9 LAST_DELIVERED_SEQ NUMERIC (10) LT

10 LAST_MSG_TIMESTAMP Timestamp (6) LT

11 MAX_MSG_EXPIRYTIME Timestamp (6) LT

12 ORDERED NUMERIC (1) LT

13 REMOVED NUMERIC (1) LT

Deliverable 5.4 Developed Modules V1.0 54 of 81

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

RECEIVER_GROUPS_PK PK GROUP_ID ASC

Deliverable 5.4 Developed Modules V1.0 55 of 81

Table Name RELIABILITY

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 RELIABILITY_ID P Y VARCHAR (255 CHAR) LT

2 ACKREPLY VARCHAR (255 CHAR) LT

3 ACKREPLYELEMENT Raw (255) LT

4 ACKTO VARCHAR (255 CHAR) LT

5 ATLEASTONCE NUMERIC (1) LT

6 ATMOSTONCE NUMERIC (1) LT

7 EXPONENTIAL_BACKOFF NUMERIC (1) LT

8 INORDER NUMERIC (1) LT

9 MAXIMUM_RETRANSMISSION_COUNT NUMERIC (10) LT

10 NAME VARCHAR (255 CHAR) LT

11 RETRANSMISSION_INTERVAL NUMERIC (10) LT

12 RETRANSMIT_CALLBACK VARCHAR (255 CHAR) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

RELIABILITY_PK PK RELIABILITY_ID ASC

Deliverable 5.4 Developed Modules V1.0 56 of 81

Foreign Keys (referred from)

Name Referred From Mandatory Transferable In Arc Column Name

FKA6DEE31E894F77F3 SENDER_GROUPS Y RELIABILITY_ID

Deliverable 5.4 Developed Modules V1.0 57 of 81

Table Name RETRANSMIT_MSG

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 GMESSAGE_ID P Y VARCHAR (255 CHAR) LT

2 CONTENT_TYPE VARCHAR (255 CHAR) LT

3 MIME_FILE VARCHAR (255 CHAR) LT

4 MSG_CONTEXT BLOB (4000) LT

5 ACKNOWLEDGED NUMERIC (1) LT

6 DELIVERY_FAILED NUMERIC (1) LT

7 EXPIRYTIME Timestamp (6) LT

8 EXP_BACKOFF NUMERIC (1) LT

9 FAULTED NUMERIC (1) LT

10 GROUPID VARCHAR (255 CHAR) LT

11 MAX_RETRANS_COUNT NUMERIC (10) LT

12 SEND_TO VARCHAR (255 CHAR) LT

13 REPLY_PATTERN VARCHAR (255 CHAR) LT

14 RESEND_COUNT NUMERIC (10) LT

15 RETRANS_INTERVAL NUMERIC (10) LT

Deliverable 5.4 Developed Modules V1.0 58 of 81

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

16 RETRANSMIT_CALLBACK VARCHAR (255 CHAR) LT

17 SEQ_NUMBER NUMERIC (10) LT

18 TIME_TO_SEND NUMERIC (19) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

RETRANSMIT_MSG_PK PK GMESSAGE_ID ASC

Foreign Keys (referred from)

Name Referred From Mandatory Transferable In Arc Column Name

FK63ABC176768643B2 RETRANSMIT_MSG_ATTACHMENTS Y Y GMESSAGE_ID

Deliverable 5.4 Developed Modules V1.0 59 of 81

Table Name RETRANSMIT_MSG_ATTACHMENTS

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 RETRANSMIT_MSG_GMESSAGE_ID F Y VARCHAR (255 CHAR) LT

2 ATTACHMENTS_ID Y VARCHAR (255 CHAR) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

RETRANSMIT_MSG_ATTACHMENTS_ATTACHMENTS_ID_UN UK ATTACHMENTS_ID ASC

Foreign Keys (referring to)

Name Refering To Mandatory Transferable In Arc Column Name

FK63ABC176768643B2 RETRANSMIT_MSG Y Y GMESSAGE_ID

Deliverable 5.4 Developed Modules V1.0 60 of 81

Table Name SENDER_GROUPS

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 GROUP_ID P Y VARCHAR (255 CHAR) LT

2 ACKNOWLEDGED_COUNT NUMERIC (10) LT

3 CAPACITY NUMERIC (10) LT

4 CLOSED NUMERIC (1) LT

5 CURRENT_SEQ NUMERIC (10) LT

6 DATE_STARTED Timestamp (6) LT

7 FAILED_COUNT NUMERIC (10) LT

8 GROUPID VARCHAR (255 CHAR) LT

9 GROUP_LIFETIME VARCHAR (255 CHAR) LT

10 MAX_IDLE_DURATION VARCHAR (255 CHAR) LT

11 LAST_MSG_TIMESTAMP Timestamp (6) LT

12 MAX_MSG_EXPIRYTIME Timestamp (6) LT

13 MESG_LIFETIME VARCHAR (255 CHAR) LT

14 NAME VARCHAR (255 CHAR) LT

15 QUALITY_RELIABILITY_ID F VARCHAR (255 CHAR) LT

Deliverable 5.4 Developed Modules V1.0 61 of 81

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

SENDER_GROUPS_PK PK GROUP_ID ASC

Foreign Keys (referring to)

Name Refering To Mandatory Transferable In Arc Column Name

FKA6DEE31E894F77F3 RELIABILITY Y RELIABILITY_ID

Deliverable 5.4 Developed Modules V1.0 62 of 81

Table Name SEQUENCE_TABLE

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 SEQ_NAME VARCHAR (255 CHAR) LT

2 SEQ_COUNT NUMERIC (10) LT

Deliverable 5.4 Developed Modules V1.0 63 of 81

Table Name SYNC_RESPONSES

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 ID P Y VARCHAR (255 CHAR) LT

2 CONTENT_TYPE VARCHAR (255 CHAR) LT

3 MIME_FILE VARCHAR (255 CHAR) LT

4 MSG_CONTEXT BLOB (4000) LT

5 MEP VARCHAR (255 CHAR) LT

6 MPC VARCHAR (255 CHAR) LT

7 MSG_INFOSET BLOB (4000) LT

8 PMODE VARCHAR (255 CHAR) LT

9 SENT NUMERIC (1) LT

10 TIME_IN_MILLIS NUMERIC (19) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

SYNC_RESPONSES_PK PK ID ASC

Foreign Keys (referred from)

Name Referred From Mandatory Transferable In Arc Column Name

FK6084EC7F10131110 SYNC_RESPONSES_ATTACHMENTS Y Y ID

Deliverable 5.4 Developed Modules V1.0 64 of 81

Table Name SYNC_RESPONSES_ATTACHMENTS

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 SYNC_RESPONSES_ID F Y VARCHAR (255 CHAR) LT

2 ATTACHMENTS_ID Y VARCHAR (255 CHAR) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

SYNC_RESPONSES_ATTACHMENTS_ATTACHMENTS_ID_UN UK ATTACHMENTS_ID ASC

Foreign Keys (referring to)

Name Refering To Mandatory Transferable In Arc Column Name

FK6084EC7F10131110 SYNC_RESPONSES Y Y ID

Deliverable 5.4 Developed Modules V1.0 65 of 81

Table Name USERMSG_PULL

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 ID P Y VARCHAR (255 CHAR) LT

2 CONTENT_TYPE VARCHAR (255 CHAR) LT

3 MIME_FILE VARCHAR (255 CHAR) LT

4 MSG_CONTEXT BLOB (4000) LT

5 MPC VARCHAR (255 CHAR) LT

6 MSG_INFOSET BLOB (4000) LT

7 PMODE VARCHAR (255 CHAR) LT

8 PULLED NUMERIC (1) LT

9 TIME_IN_MILLIS NUMERIC (19) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

USERMSG_PULL_PK PK ID ASC

Foreign Keys (referred from)

Name Referred From Mandatory Transferable In Arc Column Name

FK4E9D823FDAD13FDA USERMSG_PULL_ATTACHMENTS Y Y ID

Deliverable 5.4 Developed Modules V1.0 66 of 81

Table Name USERMSG_PULL_ATTACHMENTS

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 USERMSG_PULL_ID F Y VARCHAR (255 CHAR) LT

2 ATTACHMENTS_ID Y VARCHAR (255 CHAR) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

USERMSG_PULL_ATTACHMENTS_ATTACHMENTS_ID_UN UK ATTACHMENTS_ID ASC

Foreign Keys (referring to)

Name Refering To Mandatory Transferable In Arc Column Name

FK4E9D823FDAD13FDA USERMSG_PULL Y Y ID

Deliverable 5.4 Developed Modules V1.0 67 of 81

Table Name USERMSG_PUSH

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 ID P Y VARCHAR (255 CHAR) LT

2 CONTENT_TYPE VARCHAR (255 CHAR) LT

3 MIME_FILE VARCHAR (255 CHAR) LT

4 MSG_CONTEXT BLOB (4000) LT

5 CALLBACK_CLASS VARCHAR (255 CHAR) LT

6 LEGNUMBER NUMERIC (10) LT

7 MEP VARCHAR (255 CHAR) LT

8 MSG_INFOSET BLOB (4000) LT

9 PMODE VARCHAR (255 CHAR) LT

10 PUSHED NUMERIC (1) LT

11 TIME_IN_MILLIS NUMERIC (19) LT

12 TOURL VARCHAR (255 CHAR) LT

Deliverable 5.4 Developed Modules V1.0 68 of 81

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

USERMSG_PUSH_PK PK ID ASC

Foreign Keys (referred from)

Name Referred From Mandatory Transferable In Arc Column Name

FK78EC851E85558B8E RECEIPT_TRACKING Y ID

FKC1A1EB94DB3213BA USERMSG_PUSH_ATTACHMENTS Y Y ID

Deliverable 5.4 Developed Modules V1.0 69 of 81

Table Name USERMSG_PUSH_ATTACHMENTS

Columns

No Column Name PK FK M Data Type
DT

kind
Description

Formula

(Default Value)

1 USERMSG_PUSH_ID F Y VARCHAR (255 CHAR) LT

2 ATTACHMENTS_ID Y VARCHAR (255 CHAR) LT

Indexes

Index Name State Functional Spatial Expression Column Name
Sort

Order

USERMSG_PUSH_ATTACHMENTS_ATTACHMENTS_ID_UN UK ATTACHMENTS_ID ASC

Foreign Keys (referring to)

Name Refering To Mandatory Transferable In Arc Column Name

FKC1A1EB94DB3213BA USERMSG_PUSH Y Y ID

Deliverable 5.4Developed Modules V1.0 70 of 81

 1
 2

Figure 14 DB Schema Gateway 3

 4

Deliverable 5.4Developed Modules V1.0 71 of 81

Error Codes 1

Deliverable 5.4Developed Modules V1.0 72 of 81

3. SW Module Generic Connector Framework 1
 2

The second main SW delivery of WP5 is the generic connector framework, which tries to provide as 3
much as possible the common functionality which is needed by every piloting MS. The MS specific 4
parts can be provided by some dedicated implementation classes via well defined interfaces. 5

3.1. Workflow 6

 7

The connector framework implements basically two workflows one for sending messages from the 8
national backend system to the Gateway and the other partner Gateway in Europe (outgoing 9
workflow) and one for receiving messages from the Gateway and forwarding them to the national 10
backend system (incoming workflow). 11

Deliverable 5.4Developed Modules V1.0 73 of 81

 1

Figure 15 Incoming Workflow 2

1

2

3

4

5

6

7

8

9

Deliverable 5.4Developed Modules V1.0 74 of 81

The incoming workflow consists of the following steps: 1

1) The connector queries the pending messages from the Gateway and downloads them. 2
2) Then the Trust Ok Token is validated and 3
3) A REMMDAcceptanceRejection Evidence is created and sent back to the Gateway. 4
4) Afterwards the content is transformed (if necessary) to the national format and the message 5

is send to the national backend system. 6
5) Two timers are started, one for the delivery confirmation (REMMDDeliveryNonDelivery) from 7

the national backend system and one for the real retrieval of the message by the end 8
recipient (REMMDRetrievalNonRetrievalbyRecipient). The second event is optional and can 9
be switched off depended if the national subsystem provides such information. 10

6) Then the connector tries to receive a delivery confirmation from the national backend 11
system and depending whether this confirmation is received or the timer is finished a 12

7) REMMDDeliveryNonDelivery Evidence is generated and sent back to the Gateway. 13
8) The connector tries to receive a recipient confirmation form the national backend system 14

and depending whether this confirmation is received or the timer is finished a 15
9) REMMDRetrievalNonRetrievalbyRecipient Evidence is generated and it is sent back to the 16

Gateway. 17

 18

Deliverable 5.4Developed Modules V1.0 75 of 81

 1

Figure 16 Outgoing Workflow 2

 3

 4

 5

1

2

3

4

6

5

7

8

9

Deliverable 5.4Developed Modules V1.0 76 of 81

The outgoing workflow consists of the following steps: 1

1) The connector queries the pending messages from the national backend system and 2
downloads them. 3

2) Afterwards the content is transformed (if necessary) to the e-CODEX format and 4
3) The Trust Ok Token is created as well as the ASiCS container. 5
4) A REMMDSubmissionAcceptanceRejection Evidence is created. Only in case of errors a 6

rejection evidence is sent back to the national subsystem immediately. 7
5) Then a timer is started. The system waits for the acceptance of the message by the gateway, 8

in this case will be created and evidence confirmation (RelayREMMD Evidence). 9
6) The ebMS message is created including the message content, the ASiCS container and the 10

REMMDSubmissionAcceptanceRejection Evidence. The EbMS message is forwarded to 11
Gateway via the backend web service. 12

7) Afterwards the different possible evidences are retrieved by the Gateway and forwarded to 13
the national backend system. First a RelayREMMD Evidence will be retrieved and 14

8) Second a REMMDDeliveryNonDelivery Evidence will be retrieved and finally a 15
9) REMMDRetrievalNonRetrievalbyRecipient Evidence. 16

 17

3.1.1. Configuration 18

 19

The following configuration parameters can be set: 20

 21

gateway.endpoint.address=127.0.0.1:8080 22

gateway.name=AT 23

gateway.role=GW 24

Defines the endpoint address of the gateway backend webservice and the corresponding MS (Iso 25
Code) and role. 26

 27

connector.national.backend.client.implementation.class.name=eu.ecodex.connector.nbc.ECodexCo28
nnectorNationalBackendClientImpl 29

As every nation has its own backend client, an implementation of the 30
ECodexConnectorNationalBackendClient interface has to be implemented which handles the 31
connection to its own backend. Here the full qualified name of the implementation class which 32
implements ECodexConnectorNationalBackendClient must be given. 33

 34

connector.use.content.mapper=true 35

connector.content.mapper.implementation.class.name=eu.ecodex.connector.mapping.ECodexCon36
nectorContentMapperImpl 37

Defines if a content mapper module should be used. If there is a certain national format the e-CODEX 38
message should be transformed to this content and the mapper handles the mapping. The main class 39
ECodexConnectorContentMapperImpl has to be extended and the full qualified name of the 40
implementation class which implements ECodexConnectorContentMapper must be given. 41

 42

connector.use.security.toolkit=true 43

Defines if the security toolkit from WP4 should be used. If messages should be added with a 44
trustOkToken and be sent in an encrypted container, this module has to be activated. 45

 46

Deliverable 5.4Developed Modules V1.0 77 of 81

connector.use.evidences.toolkit=true 1

Defines if evidences toolkit should be used and ebMS standard messages should be confirmed or 2
declined by evidences messages sent back to the message sender. Those evidences contain the state 3
of the message sent and are therefore good to hold reliability. 4

 5

connector.check.messages.period.ms=30000 6

Defines how often the gateway and the national backend system should be checked for messages. All 7
messages in both directions should be handled entirely before next period starts. So no conflicts are 8
produced. The Value is defined in milliseconds. 9

 10

connector.database.dialect= 11

connector.database.driverClassName= 12

connector.database.url= 13

connector.database.username= 14

connector.database.password= 15

These properties define the connection to the database where message states should be logged. 16

The dialect and driverClassName values depend on the dbms that is in use. 17

 18

 19

java.keystore.path= 20

java.keystore.password= 21

key.alias= 22

key.password= 23

These parameters define the needed java keystore holding the certificates for encryption and 24
authentication with the partner Gateway. 25

 26

Deliverable 5.4Developed Modules V1.0 78 of 81

3.2. Component Structure 1

 2

Figure 17 e-CODEX Connector Structure 3

 4

The connector consists of a controller, which implements and controls the whole workflow between 5
the components. For the needed e-CODEX functionality, which is common for all the piloting MS, 6
such as the generation of TrustOkToken und generation of evidences, there exist specific 7
components, which have been made optional to be able to support future use in other areas than e-8
CODEX. For the connection to the Gateway there exist a full implementation of the Backend Web 9
Service. The connection to the national Backend System must be provided by the MS and be 10
configured as a plugin. For internal use, e.g. storing message Ids, a small DB is needed. The following 11
chapters describe the components in more detail. The source of the components is available at the 12
BSCW server as well. Within the source you will find additional documentation describing the 13
different methods and parameters in more detail. 14

 15

3.2.1. ECodexConnectorCommon 16

This module implements the basic classes and structures used by all the other components such as 17
the exception handling, DB objects and a common unique definition of a message object. The DB is 18
used to hold the internal state of the messages and the message object is used to wrap different 19
national formats and the e-CODEX format to one generic JAVA Object. This general objects are used 20
internally by the Framework as well as by the needed national extensions. It is a very common 21
practice to extract such basic structures within a separate package. For a detailed description please 22
refer to the inline documentation of the source code found as part of the deliverable on the BSCW 23
server. 24

 25

3.2.2. ECodexConnectorNationalBackendClient 26

This module has to be implemented by the MS. It covers the message forwarding to and from the 27
national legal communication system. Every national legal communication system uses different 28

Deliverable 5.4Developed Modules V1.0 79 of 81

technologies therefore this systems have to be mapped to a generic interface which can be used by 1
the connector framework. 2

The interface is defined as follows: 3

 4
/** 5
 * This method delivers a message received by the gateway. The message 6
 * content is already transformed into a national format, if there is a 7
 * content mapper configured and implemented. 8
 * 9
 * @param message 10
 * A {@link Message} object with all data concerning the message. 11
 * @throws ECodexConnectorNationalBackendClientException 12
 * @throws ImplementationMissingException 13
 */ 14
 public void deliverMessage(Message message) throws ECodexConnectorNationalBackendClientException, 15

 ImplementationMissingException; 16

 17

 /** 18
 * If there is a new evidence generated for a message and sent to the 19
 * connector, this new evidence must be sent to the national system. 20
 * 21
 * @return A {@link MessageConfirmation} object containing the messageId, 22
 * the evidence was generated for, the {@link ConfirmationStateEnum} 23
 * and the evidence itself. 24
 * @throws ECodexConnectorNationalBackendClientException 25
 * @throws ImplementationMissingException 26
 */ 27
 public void deliverLastEvidenceForMessage(MessageConfirmation confirmation) 28

 throws ECodexConnectorNationalBackendClientException, ImplementationMissingException; 29

 30

 /** 31
 * Requests all messages from the national system that are not yet handled 32
 * by this connector instance, therefore not sent over the gateway. 33
 * 34
 * @return an Array of messageId's that are queued in the national backend 35
 * system and have to be handled by the connector. 36
 * @throws ECodexConnectorNationalBackendClientException 37
 * @throws ImplementationMissingException 38
 */ 39
 public String[] requestMessagesUnsent() throws ECodexConnectorNationalBackendClientException, 40

 ImplementationMissingException; 41

 42

 /** 43
 * Requests a certain message that has to be handled by the connector and 44
 * sent over the gateway. 45
 * 46
 * @param message 47
 * A {@link Message} object with all data concerning the message. 48
 * This object contains {@link MessageDetails} which holds the 49
 * messageId of the message that is requested. 50
 * @throws ECodexConnectorNationalBackendClientException 51
 * @throws ImplementationMissingException 52
 */ 53
 public void requestMessage(Message message) throws ECodexConnectorNationalBackendClientException, 54

Deliverable 5.4Developed Modules V1.0 80 of 81

 ImplementationMissingException; 1

 2

 /** 3
 * Requests all new confirmations for messages delivered to the national 4
 * backend system before. If the national system marks a message as 5
 * delivered, or retrieved a {@link MessageConfirmation} should be created 6
 * and queued. 7
 * 8
 * @return an Array of {@link MessageConfirmation} Objects which contain 9
 * informations on what message is in which confirmation state. 10
 * @throws ECodexConnectorNationalBackendClientException 11
 * @throws ImplementationMissingException 12
 */ 13
 public MessageConfirmation[] requestConfirmations() throws 14
ECodexConnectorNationalBackendClientException, 15

 ImplementationMissingException; 16

 17

These interface methods have to be implemented by the MS. For a detailed description please refer 18
to the inline documentation of the source code found as part of the deliverable on the BSCW server. 19

 20

3.2.3. ECodexConnectorEvidencesToolkit 21

This module is responsible for the generation of the evidences which needs to be sent by the 22
connector according to the workflow described in the chapter 3.1. This is a library reused from a 23
former LSP project SPOCS and it is based on the ETSI REM Standard. The usage of this module is 24
optional and it can be switched off via the configuration file. In the sense of e-CODEX this module is 25
mandatory because with the evidence the proof for a legal valid delivery is done. But for future use 26
as a convergence solution this module might be optional. For a detailed description please refer to 27
the inline documentation of the source code found as part of the deliverable on the BSCW server. 28

 29

 30

3.2.4. ECodexConnectorSecurityToolkit 31

This module is responsible for the generation of the Trust Ok token and the ASiCs container 32
packaging. Basically it contains and uses the deliverables provided by WP4. The Trust Ok Token will 33
be generated in a XML and PDF form and defines the result of the signature verification or the user 34
information verification in the context of an advanced electronic system. The ASiCs container is used 35
to store the payload in a signed and secure way as a ZIP Container. The usage of this module is 36
optional and it can be switched off via the configuration file. In the sense of e-CODEX this module is 37
mandatory, because the Trust Ok Token is needed as a basic instrument for the circle of trust. But for 38
future use as a convergence solution this module might be optional. For a detailed description please 39
refer to the inline documentation of the source code found as part of the deliverable on the BSCW 40
server. 41

 42

 43

3.2.5. ECodexConnectorContentMapper 44

This module is responsible for the mapping between the national and e-CODEX XML schemas. The 45
usage of this module is optional and it can be switched off via the configuration file, in the case the 46
piloting MS does not have an existing national schema yet and will use the e-CODEX XML schema. 47

Deliverable 5.4Developed Modules V1.0 81 of 81

If a MS has a national XML Schema than this module must be implemented by the MS. 1

The interface is defined as follows: 2

 3

 /** 4
 * 5
 * Method to map international eCodex XML to national format. Must be 6
 * overridden when ContentMapper is used by configuration. 7
 * 8
 * @param internationalContent 9
 * - eCodex XML. 10
 * @return nationalContent as byte array. 11
 * @throws ECodexConnectorContentMapperException 12
 * @throws ImplementationMissingException 13
 */ 14
 public byte[] mapInternationalToNational(byte[] internationalContent) throws 15
ECodexConnectorContentMapperException, 16

 ImplementationMissingException; 17

 18

 /** 19
 * Method to map national XML to international eCodex format. Must be 20
 * overridden when ContentMapper is used by configuration. 21
 * 22
 * @param nationalContent 23
 * @return eCodex XML as byte array. 24
 * @throws ECodexConnectorContentMapperException 25
 * @throws ImplementationMissingException 26
 */ 27
 public byte[] mapNationalToInternational(byte[] nationalContent) throws 28
ECodexConnectorContentMapperException, 29

 ImplementationMissingException; 30

 31

These two methods have to be implemented by the MS according to their national schemas. It is fully 32
independent and up to the MS which type of technique will be used for the content (XML) mapping. 33
If the MS implemented additional validation rules as well is also up to the MS. The interface itself is 34
easy to understand and self explaining by just exchanging bytestreams. The e-CODEX content format, 35
which needs to be mapped to national schemas has been defined by WP6. Therefore the deliverables 36
of WP6 are a necessary input. 37

3.2.6. ECodexConnectorController 38

This is the main class of the connector framework and it implements the incoming and outgoing 39
workflow as described in chapter 3.1 based on the configuration parameters. This is the main central 40
component and it calls all other module described in this chapter according to the workflow. For a 41
detailed description please refer to the inline documentation of the source code found as part of the 42
deliverable on the BSCW server. 43

3.2.7. ECodexConnectorGatewayWebserviceClient 44

This module implements the Backend Web Service provided by the e-CODEX Gateway. e-CODEX has 45
defined such a Web Service for an easy access to the Gateway. Due to the fact that this interface is 46
the same for all MS it could be fully implemented and provided to the MS within the Connector 47
Framework. The internal call of this module is done by the Controller Module and therefore 48
transparent. For a detailed description please refer to the inline documentation of the source code 49
found as part of the deliverable on the BSCW server. 50

